Step |
Hyp |
Ref |
Expression |
1 |
|
1re |
|- 1 e. RR |
2 |
|
ax-rnegex |
|- ( 1 e. RR -> E. c e. RR ( 1 + c ) = 0 ) |
3 |
|
ax-1ne0 |
|- 1 =/= 0 |
4 |
|
oveq2 |
|- ( c = 0 -> ( 1 + c ) = ( 1 + 0 ) ) |
5 |
4
|
eqeq1d |
|- ( c = 0 -> ( ( 1 + c ) = 0 <-> ( 1 + 0 ) = 0 ) ) |
6 |
5
|
biimpcd |
|- ( ( 1 + c ) = 0 -> ( c = 0 -> ( 1 + 0 ) = 0 ) ) |
7 |
|
oveq2 |
|- ( ( 1 + 0 ) = 0 -> ( ( ( _i x. _i ) x. ( _i x. _i ) ) x. ( 1 + 0 ) ) = ( ( ( _i x. _i ) x. ( _i x. _i ) ) x. 0 ) ) |
8 |
|
ax-icn |
|- _i e. CC |
9 |
8 8
|
mulcli |
|- ( _i x. _i ) e. CC |
10 |
9 9
|
mulcli |
|- ( ( _i x. _i ) x. ( _i x. _i ) ) e. CC |
11 |
|
ax-1cn |
|- 1 e. CC |
12 |
|
0cn |
|- 0 e. CC |
13 |
10 11 12
|
adddii |
|- ( ( ( _i x. _i ) x. ( _i x. _i ) ) x. ( 1 + 0 ) ) = ( ( ( ( _i x. _i ) x. ( _i x. _i ) ) x. 1 ) + ( ( ( _i x. _i ) x. ( _i x. _i ) ) x. 0 ) ) |
14 |
10
|
mulid1i |
|- ( ( ( _i x. _i ) x. ( _i x. _i ) ) x. 1 ) = ( ( _i x. _i ) x. ( _i x. _i ) ) |
15 |
|
mul01 |
|- ( ( ( _i x. _i ) x. ( _i x. _i ) ) e. CC -> ( ( ( _i x. _i ) x. ( _i x. _i ) ) x. 0 ) = 0 ) |
16 |
10 15
|
ax-mp |
|- ( ( ( _i x. _i ) x. ( _i x. _i ) ) x. 0 ) = 0 |
17 |
|
ax-i2m1 |
|- ( ( _i x. _i ) + 1 ) = 0 |
18 |
16 17
|
eqtr4i |
|- ( ( ( _i x. _i ) x. ( _i x. _i ) ) x. 0 ) = ( ( _i x. _i ) + 1 ) |
19 |
14 18
|
oveq12i |
|- ( ( ( ( _i x. _i ) x. ( _i x. _i ) ) x. 1 ) + ( ( ( _i x. _i ) x. ( _i x. _i ) ) x. 0 ) ) = ( ( ( _i x. _i ) x. ( _i x. _i ) ) + ( ( _i x. _i ) + 1 ) ) |
20 |
13 19
|
eqtri |
|- ( ( ( _i x. _i ) x. ( _i x. _i ) ) x. ( 1 + 0 ) ) = ( ( ( _i x. _i ) x. ( _i x. _i ) ) + ( ( _i x. _i ) + 1 ) ) |
21 |
20 16
|
eqeq12i |
|- ( ( ( ( _i x. _i ) x. ( _i x. _i ) ) x. ( 1 + 0 ) ) = ( ( ( _i x. _i ) x. ( _i x. _i ) ) x. 0 ) <-> ( ( ( _i x. _i ) x. ( _i x. _i ) ) + ( ( _i x. _i ) + 1 ) ) = 0 ) |
22 |
10 9 11
|
addassi |
|- ( ( ( ( _i x. _i ) x. ( _i x. _i ) ) + ( _i x. _i ) ) + 1 ) = ( ( ( _i x. _i ) x. ( _i x. _i ) ) + ( ( _i x. _i ) + 1 ) ) |
23 |
9
|
mulid1i |
|- ( ( _i x. _i ) x. 1 ) = ( _i x. _i ) |
24 |
23
|
oveq2i |
|- ( ( ( _i x. _i ) x. ( _i x. _i ) ) + ( ( _i x. _i ) x. 1 ) ) = ( ( ( _i x. _i ) x. ( _i x. _i ) ) + ( _i x. _i ) ) |
25 |
9 9 11
|
adddii |
|- ( ( _i x. _i ) x. ( ( _i x. _i ) + 1 ) ) = ( ( ( _i x. _i ) x. ( _i x. _i ) ) + ( ( _i x. _i ) x. 1 ) ) |
26 |
17
|
oveq2i |
|- ( ( _i x. _i ) x. ( ( _i x. _i ) + 1 ) ) = ( ( _i x. _i ) x. 0 ) |
27 |
|
mul01 |
|- ( ( _i x. _i ) e. CC -> ( ( _i x. _i ) x. 0 ) = 0 ) |
28 |
9 27
|
ax-mp |
|- ( ( _i x. _i ) x. 0 ) = 0 |
29 |
26 28
|
eqtri |
|- ( ( _i x. _i ) x. ( ( _i x. _i ) + 1 ) ) = 0 |
30 |
25 29
|
eqtr3i |
|- ( ( ( _i x. _i ) x. ( _i x. _i ) ) + ( ( _i x. _i ) x. 1 ) ) = 0 |
31 |
24 30
|
eqtr3i |
|- ( ( ( _i x. _i ) x. ( _i x. _i ) ) + ( _i x. _i ) ) = 0 |
32 |
31
|
oveq1i |
|- ( ( ( ( _i x. _i ) x. ( _i x. _i ) ) + ( _i x. _i ) ) + 1 ) = ( 0 + 1 ) |
33 |
22 32
|
eqtr3i |
|- ( ( ( _i x. _i ) x. ( _i x. _i ) ) + ( ( _i x. _i ) + 1 ) ) = ( 0 + 1 ) |
34 |
|
00id |
|- ( 0 + 0 ) = 0 |
35 |
34
|
eqcomi |
|- 0 = ( 0 + 0 ) |
36 |
33 35
|
eqeq12i |
|- ( ( ( ( _i x. _i ) x. ( _i x. _i ) ) + ( ( _i x. _i ) + 1 ) ) = 0 <-> ( 0 + 1 ) = ( 0 + 0 ) ) |
37 |
|
0re |
|- 0 e. RR |
38 |
|
readdcan |
|- ( ( 1 e. RR /\ 0 e. RR /\ 0 e. RR ) -> ( ( 0 + 1 ) = ( 0 + 0 ) <-> 1 = 0 ) ) |
39 |
1 37 37 38
|
mp3an |
|- ( ( 0 + 1 ) = ( 0 + 0 ) <-> 1 = 0 ) |
40 |
21 36 39
|
3bitri |
|- ( ( ( ( _i x. _i ) x. ( _i x. _i ) ) x. ( 1 + 0 ) ) = ( ( ( _i x. _i ) x. ( _i x. _i ) ) x. 0 ) <-> 1 = 0 ) |
41 |
7 40
|
sylib |
|- ( ( 1 + 0 ) = 0 -> 1 = 0 ) |
42 |
6 41
|
syl6 |
|- ( ( 1 + c ) = 0 -> ( c = 0 -> 1 = 0 ) ) |
43 |
42
|
necon3d |
|- ( ( 1 + c ) = 0 -> ( 1 =/= 0 -> c =/= 0 ) ) |
44 |
3 43
|
mpi |
|- ( ( 1 + c ) = 0 -> c =/= 0 ) |
45 |
|
ax-rrecex |
|- ( ( c e. RR /\ c =/= 0 ) -> E. x e. RR ( c x. x ) = 1 ) |
46 |
44 45
|
sylan2 |
|- ( ( c e. RR /\ ( 1 + c ) = 0 ) -> E. x e. RR ( c x. x ) = 1 ) |
47 |
|
simpr |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> A e. CC ) |
48 |
|
simplrl |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> x e. RR ) |
49 |
48
|
recnd |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> x e. CC ) |
50 |
47 49
|
mulcld |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( A x. x ) e. CC ) |
51 |
|
simplll |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> c e. RR ) |
52 |
51
|
recnd |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> c e. CC ) |
53 |
12
|
a1i |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> 0 e. CC ) |
54 |
50 52 53
|
adddid |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( ( A x. x ) x. ( c + 0 ) ) = ( ( ( A x. x ) x. c ) + ( ( A x. x ) x. 0 ) ) ) |
55 |
11
|
a1i |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> 1 e. CC ) |
56 |
55 52 53
|
addassd |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( ( 1 + c ) + 0 ) = ( 1 + ( c + 0 ) ) ) |
57 |
|
simpllr |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( 1 + c ) = 0 ) |
58 |
57
|
oveq1d |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( ( 1 + c ) + 0 ) = ( 0 + 0 ) ) |
59 |
56 58
|
eqtr3d |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( 1 + ( c + 0 ) ) = ( 0 + 0 ) ) |
60 |
34 59 57
|
3eqtr4a |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( 1 + ( c + 0 ) ) = ( 1 + c ) ) |
61 |
37
|
a1i |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> 0 e. RR ) |
62 |
51 61
|
readdcld |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( c + 0 ) e. RR ) |
63 |
1
|
a1i |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> 1 e. RR ) |
64 |
|
readdcan |
|- ( ( ( c + 0 ) e. RR /\ c e. RR /\ 1 e. RR ) -> ( ( 1 + ( c + 0 ) ) = ( 1 + c ) <-> ( c + 0 ) = c ) ) |
65 |
62 51 63 64
|
syl3anc |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( ( 1 + ( c + 0 ) ) = ( 1 + c ) <-> ( c + 0 ) = c ) ) |
66 |
60 65
|
mpbid |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( c + 0 ) = c ) |
67 |
66
|
oveq2d |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( ( A x. x ) x. ( c + 0 ) ) = ( ( A x. x ) x. c ) ) |
68 |
54 67
|
eqtr3d |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( ( ( A x. x ) x. c ) + ( ( A x. x ) x. 0 ) ) = ( ( A x. x ) x. c ) ) |
69 |
|
mul31 |
|- ( ( A e. CC /\ x e. CC /\ c e. CC ) -> ( ( A x. x ) x. c ) = ( ( c x. x ) x. A ) ) |
70 |
47 49 52 69
|
syl3anc |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( ( A x. x ) x. c ) = ( ( c x. x ) x. A ) ) |
71 |
|
simplrr |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( c x. x ) = 1 ) |
72 |
71
|
oveq1d |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( ( c x. x ) x. A ) = ( 1 x. A ) ) |
73 |
47
|
mulid2d |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( 1 x. A ) = A ) |
74 |
70 72 73
|
3eqtrd |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( ( A x. x ) x. c ) = A ) |
75 |
|
mul01 |
|- ( ( A x. x ) e. CC -> ( ( A x. x ) x. 0 ) = 0 ) |
76 |
50 75
|
syl |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( ( A x. x ) x. 0 ) = 0 ) |
77 |
74 76
|
oveq12d |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( ( ( A x. x ) x. c ) + ( ( A x. x ) x. 0 ) ) = ( A + 0 ) ) |
78 |
68 77 74
|
3eqtr3d |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( A + 0 ) = A ) |
79 |
78
|
exp42 |
|- ( ( c e. RR /\ ( 1 + c ) = 0 ) -> ( x e. RR -> ( ( c x. x ) = 1 -> ( A e. CC -> ( A + 0 ) = A ) ) ) ) |
80 |
79
|
rexlimdv |
|- ( ( c e. RR /\ ( 1 + c ) = 0 ) -> ( E. x e. RR ( c x. x ) = 1 -> ( A e. CC -> ( A + 0 ) = A ) ) ) |
81 |
46 80
|
mpd |
|- ( ( c e. RR /\ ( 1 + c ) = 0 ) -> ( A e. CC -> ( A + 0 ) = A ) ) |
82 |
81
|
rexlimiva |
|- ( E. c e. RR ( 1 + c ) = 0 -> ( A e. CC -> ( A + 0 ) = A ) ) |
83 |
1 2 82
|
mp2b |
|- ( A e. CC -> ( A + 0 ) = A ) |