Step |
Hyp |
Ref |
Expression |
1 |
|
cnegex |
|- ( A e. CC -> E. x e. CC ( A + x ) = 0 ) |
2 |
|
cnegex |
|- ( x e. CC -> E. y e. CC ( x + y ) = 0 ) |
3 |
2
|
ad2antrl |
|- ( ( A e. CC /\ ( x e. CC /\ ( A + x ) = 0 ) ) -> E. y e. CC ( x + y ) = 0 ) |
4 |
|
0cn |
|- 0 e. CC |
5 |
|
addass |
|- ( ( 0 e. CC /\ 0 e. CC /\ y e. CC ) -> ( ( 0 + 0 ) + y ) = ( 0 + ( 0 + y ) ) ) |
6 |
4 4 5
|
mp3an12 |
|- ( y e. CC -> ( ( 0 + 0 ) + y ) = ( 0 + ( 0 + y ) ) ) |
7 |
6
|
adantr |
|- ( ( y e. CC /\ ( x + y ) = 0 ) -> ( ( 0 + 0 ) + y ) = ( 0 + ( 0 + y ) ) ) |
8 |
7
|
3ad2ant3 |
|- ( ( A e. CC /\ ( x e. CC /\ ( A + x ) = 0 ) /\ ( y e. CC /\ ( x + y ) = 0 ) ) -> ( ( 0 + 0 ) + y ) = ( 0 + ( 0 + y ) ) ) |
9 |
|
00id |
|- ( 0 + 0 ) = 0 |
10 |
9
|
oveq1i |
|- ( ( 0 + 0 ) + y ) = ( 0 + y ) |
11 |
|
simp1 |
|- ( ( A e. CC /\ ( x e. CC /\ ( A + x ) = 0 ) /\ ( y e. CC /\ ( x + y ) = 0 ) ) -> A e. CC ) |
12 |
|
simp2l |
|- ( ( A e. CC /\ ( x e. CC /\ ( A + x ) = 0 ) /\ ( y e. CC /\ ( x + y ) = 0 ) ) -> x e. CC ) |
13 |
|
simp3l |
|- ( ( A e. CC /\ ( x e. CC /\ ( A + x ) = 0 ) /\ ( y e. CC /\ ( x + y ) = 0 ) ) -> y e. CC ) |
14 |
11 12 13
|
addassd |
|- ( ( A e. CC /\ ( x e. CC /\ ( A + x ) = 0 ) /\ ( y e. CC /\ ( x + y ) = 0 ) ) -> ( ( A + x ) + y ) = ( A + ( x + y ) ) ) |
15 |
|
simp2r |
|- ( ( A e. CC /\ ( x e. CC /\ ( A + x ) = 0 ) /\ ( y e. CC /\ ( x + y ) = 0 ) ) -> ( A + x ) = 0 ) |
16 |
15
|
oveq1d |
|- ( ( A e. CC /\ ( x e. CC /\ ( A + x ) = 0 ) /\ ( y e. CC /\ ( x + y ) = 0 ) ) -> ( ( A + x ) + y ) = ( 0 + y ) ) |
17 |
|
simp3r |
|- ( ( A e. CC /\ ( x e. CC /\ ( A + x ) = 0 ) /\ ( y e. CC /\ ( x + y ) = 0 ) ) -> ( x + y ) = 0 ) |
18 |
17
|
oveq2d |
|- ( ( A e. CC /\ ( x e. CC /\ ( A + x ) = 0 ) /\ ( y e. CC /\ ( x + y ) = 0 ) ) -> ( A + ( x + y ) ) = ( A + 0 ) ) |
19 |
14 16 18
|
3eqtr3rd |
|- ( ( A e. CC /\ ( x e. CC /\ ( A + x ) = 0 ) /\ ( y e. CC /\ ( x + y ) = 0 ) ) -> ( A + 0 ) = ( 0 + y ) ) |
20 |
|
addid1 |
|- ( A e. CC -> ( A + 0 ) = A ) |
21 |
20
|
3ad2ant1 |
|- ( ( A e. CC /\ ( x e. CC /\ ( A + x ) = 0 ) /\ ( y e. CC /\ ( x + y ) = 0 ) ) -> ( A + 0 ) = A ) |
22 |
19 21
|
eqtr3d |
|- ( ( A e. CC /\ ( x e. CC /\ ( A + x ) = 0 ) /\ ( y e. CC /\ ( x + y ) = 0 ) ) -> ( 0 + y ) = A ) |
23 |
10 22
|
eqtrid |
|- ( ( A e. CC /\ ( x e. CC /\ ( A + x ) = 0 ) /\ ( y e. CC /\ ( x + y ) = 0 ) ) -> ( ( 0 + 0 ) + y ) = A ) |
24 |
22
|
oveq2d |
|- ( ( A e. CC /\ ( x e. CC /\ ( A + x ) = 0 ) /\ ( y e. CC /\ ( x + y ) = 0 ) ) -> ( 0 + ( 0 + y ) ) = ( 0 + A ) ) |
25 |
8 23 24
|
3eqtr3rd |
|- ( ( A e. CC /\ ( x e. CC /\ ( A + x ) = 0 ) /\ ( y e. CC /\ ( x + y ) = 0 ) ) -> ( 0 + A ) = A ) |
26 |
25
|
3expia |
|- ( ( A e. CC /\ ( x e. CC /\ ( A + x ) = 0 ) ) -> ( ( y e. CC /\ ( x + y ) = 0 ) -> ( 0 + A ) = A ) ) |
27 |
26
|
expd |
|- ( ( A e. CC /\ ( x e. CC /\ ( A + x ) = 0 ) ) -> ( y e. CC -> ( ( x + y ) = 0 -> ( 0 + A ) = A ) ) ) |
28 |
27
|
rexlimdv |
|- ( ( A e. CC /\ ( x e. CC /\ ( A + x ) = 0 ) ) -> ( E. y e. CC ( x + y ) = 0 -> ( 0 + A ) = A ) ) |
29 |
3 28
|
mpd |
|- ( ( A e. CC /\ ( x e. CC /\ ( A + x ) = 0 ) ) -> ( 0 + A ) = A ) |
30 |
1 29
|
rexlimddv |
|- ( A e. CC -> ( 0 + A ) = A ) |