| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpgt0 |  |-  ( A e. RR+ -> 0 < A ) | 
						
							| 2 | 1 | 3ad2ant3 |  |-  ( ( M e. RR /\ N e. RR /\ A e. RR+ ) -> 0 < A ) | 
						
							| 3 |  | rpre |  |-  ( A e. RR+ -> A e. RR ) | 
						
							| 4 | 3 | 3ad2ant3 |  |-  ( ( M e. RR /\ N e. RR /\ A e. RR+ ) -> A e. RR ) | 
						
							| 5 |  | simp1 |  |-  ( ( M e. RR /\ N e. RR /\ A e. RR+ ) -> M e. RR ) | 
						
							| 6 | 4 5 | ltaddposd |  |-  ( ( M e. RR /\ N e. RR /\ A e. RR+ ) -> ( 0 < A <-> M < ( M + A ) ) ) | 
						
							| 7 | 2 6 | mpbid |  |-  ( ( M e. RR /\ N e. RR /\ A e. RR+ ) -> M < ( M + A ) ) | 
						
							| 8 |  | simpl |  |-  ( ( M e. RR /\ A e. RR+ ) -> M e. RR ) | 
						
							| 9 | 3 | adantl |  |-  ( ( M e. RR /\ A e. RR+ ) -> A e. RR ) | 
						
							| 10 | 8 9 | readdcld |  |-  ( ( M e. RR /\ A e. RR+ ) -> ( M + A ) e. RR ) | 
						
							| 11 | 10 | 3adant2 |  |-  ( ( M e. RR /\ N e. RR /\ A e. RR+ ) -> ( M + A ) e. RR ) | 
						
							| 12 |  | simp2 |  |-  ( ( M e. RR /\ N e. RR /\ A e. RR+ ) -> N e. RR ) | 
						
							| 13 |  | ltletr |  |-  ( ( M e. RR /\ ( M + A ) e. RR /\ N e. RR ) -> ( ( M < ( M + A ) /\ ( M + A ) <_ N ) -> M < N ) ) | 
						
							| 14 | 5 11 12 13 | syl3anc |  |-  ( ( M e. RR /\ N e. RR /\ A e. RR+ ) -> ( ( M < ( M + A ) /\ ( M + A ) <_ N ) -> M < N ) ) | 
						
							| 15 | 7 14 | mpand |  |-  ( ( M e. RR /\ N e. RR /\ A e. RR+ ) -> ( ( M + A ) <_ N -> M < N ) ) |