Step |
Hyp |
Ref |
Expression |
1 |
|
swrdrlen |
|- ( ( W e. Word V /\ M e. ( 0 ... ( # ` W ) ) ) -> ( # ` ( W substr <. M , ( # ` W ) >. ) ) = ( ( # ` W ) - M ) ) |
2 |
|
pfxlen |
|- ( ( W e. Word V /\ M e. ( 0 ... ( # ` W ) ) ) -> ( # ` ( W prefix M ) ) = M ) |
3 |
1 2
|
oveq12d |
|- ( ( W e. Word V /\ M e. ( 0 ... ( # ` W ) ) ) -> ( ( # ` ( W substr <. M , ( # ` W ) >. ) ) + ( # ` ( W prefix M ) ) ) = ( ( ( # ` W ) - M ) + M ) ) |
4 |
|
lencl |
|- ( W e. Word V -> ( # ` W ) e. NN0 ) |
5 |
|
elfzelz |
|- ( M e. ( 0 ... ( # ` W ) ) -> M e. ZZ ) |
6 |
|
nn0cn |
|- ( ( # ` W ) e. NN0 -> ( # ` W ) e. CC ) |
7 |
|
zcn |
|- ( M e. ZZ -> M e. CC ) |
8 |
|
npcan |
|- ( ( ( # ` W ) e. CC /\ M e. CC ) -> ( ( ( # ` W ) - M ) + M ) = ( # ` W ) ) |
9 |
6 7 8
|
syl2an |
|- ( ( ( # ` W ) e. NN0 /\ M e. ZZ ) -> ( ( ( # ` W ) - M ) + M ) = ( # ` W ) ) |
10 |
4 5 9
|
syl2an |
|- ( ( W e. Word V /\ M e. ( 0 ... ( # ` W ) ) ) -> ( ( ( # ` W ) - M ) + M ) = ( # ` W ) ) |
11 |
3 10
|
eqtrd |
|- ( ( W e. Word V /\ M e. ( 0 ... ( # ` W ) ) ) -> ( ( # ` ( W substr <. M , ( # ` W ) >. ) ) + ( # ` ( W prefix M ) ) ) = ( # ` W ) ) |