Step |
Hyp |
Ref |
Expression |
1 |
|
addlimc.f |
|- F = ( x e. A |-> B ) |
2 |
|
addlimc.g |
|- G = ( x e. A |-> C ) |
3 |
|
addlimc.h |
|- H = ( x e. A |-> ( B + C ) ) |
4 |
|
addlimc.b |
|- ( ( ph /\ x e. A ) -> B e. CC ) |
5 |
|
addlimc.c |
|- ( ( ph /\ x e. A ) -> C e. CC ) |
6 |
|
addlimc.e |
|- ( ph -> E e. ( F limCC D ) ) |
7 |
|
addlimc.i |
|- ( ph -> I e. ( G limCC D ) ) |
8 |
|
limccl |
|- ( F limCC D ) C_ CC |
9 |
8 6
|
sselid |
|- ( ph -> E e. CC ) |
10 |
|
limccl |
|- ( G limCC D ) C_ CC |
11 |
10 7
|
sselid |
|- ( ph -> I e. CC ) |
12 |
9 11
|
addcld |
|- ( ph -> ( E + I ) e. CC ) |
13 |
4 1
|
fmptd |
|- ( ph -> F : A --> CC ) |
14 |
1 4 6
|
limcmptdm |
|- ( ph -> A C_ CC ) |
15 |
|
limcrcl |
|- ( E e. ( F limCC D ) -> ( F : dom F --> CC /\ dom F C_ CC /\ D e. CC ) ) |
16 |
6 15
|
syl |
|- ( ph -> ( F : dom F --> CC /\ dom F C_ CC /\ D e. CC ) ) |
17 |
16
|
simp3d |
|- ( ph -> D e. CC ) |
18 |
13 14 17
|
ellimc3 |
|- ( ph -> ( E e. ( F limCC D ) <-> ( E e. CC /\ A. z e. RR+ E. a e. RR+ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < z ) ) ) ) |
19 |
6 18
|
mpbid |
|- ( ph -> ( E e. CC /\ A. z e. RR+ E. a e. RR+ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < z ) ) ) |
20 |
19
|
simprd |
|- ( ph -> A. z e. RR+ E. a e. RR+ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < z ) ) |
21 |
|
rphalfcl |
|- ( y e. RR+ -> ( y / 2 ) e. RR+ ) |
22 |
|
breq2 |
|- ( z = ( y / 2 ) -> ( ( abs ` ( ( F ` v ) - E ) ) < z <-> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) ) |
23 |
22
|
imbi2d |
|- ( z = ( y / 2 ) -> ( ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < z ) <-> ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) ) ) |
24 |
23
|
rexralbidv |
|- ( z = ( y / 2 ) -> ( E. a e. RR+ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < z ) <-> E. a e. RR+ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) ) ) |
25 |
24
|
rspccva |
|- ( ( A. z e. RR+ E. a e. RR+ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < z ) /\ ( y / 2 ) e. RR+ ) -> E. a e. RR+ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) ) |
26 |
20 21 25
|
syl2an |
|- ( ( ph /\ y e. RR+ ) -> E. a e. RR+ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) ) |
27 |
5 2
|
fmptd |
|- ( ph -> G : A --> CC ) |
28 |
27 14 17
|
ellimc3 |
|- ( ph -> ( I e. ( G limCC D ) <-> ( I e. CC /\ A. z e. RR+ E. b e. RR+ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < z ) ) ) ) |
29 |
7 28
|
mpbid |
|- ( ph -> ( I e. CC /\ A. z e. RR+ E. b e. RR+ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < z ) ) ) |
30 |
29
|
simprd |
|- ( ph -> A. z e. RR+ E. b e. RR+ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < z ) ) |
31 |
|
breq2 |
|- ( z = ( y / 2 ) -> ( ( abs ` ( ( G ` v ) - I ) ) < z <-> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) ) |
32 |
31
|
imbi2d |
|- ( z = ( y / 2 ) -> ( ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < z ) <-> ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) ) ) |
33 |
32
|
rexralbidv |
|- ( z = ( y / 2 ) -> ( E. b e. RR+ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < z ) <-> E. b e. RR+ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) ) ) |
34 |
33
|
rspccva |
|- ( ( A. z e. RR+ E. b e. RR+ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < z ) /\ ( y / 2 ) e. RR+ ) -> E. b e. RR+ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) ) |
35 |
30 21 34
|
syl2an |
|- ( ( ph /\ y e. RR+ ) -> E. b e. RR+ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) ) |
36 |
|
reeanv |
|- ( E. a e. RR+ E. b e. RR+ ( A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) ) <-> ( E. a e. RR+ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ E. b e. RR+ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) ) ) |
37 |
26 35 36
|
sylanbrc |
|- ( ( ph /\ y e. RR+ ) -> E. a e. RR+ E. b e. RR+ ( A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) ) ) |
38 |
|
ifcl |
|- ( ( a e. RR+ /\ b e. RR+ ) -> if ( a <_ b , a , b ) e. RR+ ) |
39 |
38
|
3ad2ant2 |
|- ( ( ( ph /\ y e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ ( A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) ) ) -> if ( a <_ b , a , b ) e. RR+ ) |
40 |
|
nfv |
|- F/ v ( ph /\ y e. RR+ ) |
41 |
|
nfv |
|- F/ v ( a e. RR+ /\ b e. RR+ ) |
42 |
|
nfra1 |
|- F/ v A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) |
43 |
|
nfra1 |
|- F/ v A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) |
44 |
42 43
|
nfan |
|- F/ v ( A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) ) |
45 |
40 41 44
|
nf3an |
|- F/ v ( ( ph /\ y e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ ( A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) ) ) |
46 |
|
simp11l |
|- ( ( ( ( ph /\ y e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ ( A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) ) ) /\ v e. A /\ ( v =/= D /\ ( abs ` ( v - D ) ) < if ( a <_ b , a , b ) ) ) -> ph ) |
47 |
|
simp2 |
|- ( ( ( ( ph /\ y e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ ( A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) ) ) /\ v e. A /\ ( v =/= D /\ ( abs ` ( v - D ) ) < if ( a <_ b , a , b ) ) ) -> v e. A ) |
48 |
46 47
|
jca |
|- ( ( ( ( ph /\ y e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ ( A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) ) ) /\ v e. A /\ ( v =/= D /\ ( abs ` ( v - D ) ) < if ( a <_ b , a , b ) ) ) -> ( ph /\ v e. A ) ) |
49 |
|
rpre |
|- ( y e. RR+ -> y e. RR ) |
50 |
49
|
adantl |
|- ( ( ph /\ y e. RR+ ) -> y e. RR ) |
51 |
50
|
3ad2ant1 |
|- ( ( ( ph /\ y e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ ( A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) ) ) -> y e. RR ) |
52 |
51
|
3ad2ant1 |
|- ( ( ( ( ph /\ y e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ ( A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) ) ) /\ v e. A /\ ( v =/= D /\ ( abs ` ( v - D ) ) < if ( a <_ b , a , b ) ) ) -> y e. RR ) |
53 |
|
simp13l |
|- ( ( ( ( ph /\ y e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ ( A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) ) ) /\ v e. A /\ ( v =/= D /\ ( abs ` ( v - D ) ) < if ( a <_ b , a , b ) ) ) -> A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) ) |
54 |
|
simp3l |
|- ( ( ( ( ph /\ y e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ ( A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) ) ) /\ v e. A /\ ( v =/= D /\ ( abs ` ( v - D ) ) < if ( a <_ b , a , b ) ) ) -> v =/= D ) |
55 |
14
|
sselda |
|- ( ( ph /\ v e. A ) -> v e. CC ) |
56 |
46 47 55
|
syl2anc |
|- ( ( ( ( ph /\ y e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ ( A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) ) ) /\ v e. A /\ ( v =/= D /\ ( abs ` ( v - D ) ) < if ( a <_ b , a , b ) ) ) -> v e. CC ) |
57 |
46 17
|
syl |
|- ( ( ( ( ph /\ y e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ ( A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) ) ) /\ v e. A /\ ( v =/= D /\ ( abs ` ( v - D ) ) < if ( a <_ b , a , b ) ) ) -> D e. CC ) |
58 |
56 57
|
subcld |
|- ( ( ( ( ph /\ y e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ ( A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) ) ) /\ v e. A /\ ( v =/= D /\ ( abs ` ( v - D ) ) < if ( a <_ b , a , b ) ) ) -> ( v - D ) e. CC ) |
59 |
58
|
abscld |
|- ( ( ( ( ph /\ y e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ ( A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) ) ) /\ v e. A /\ ( v =/= D /\ ( abs ` ( v - D ) ) < if ( a <_ b , a , b ) ) ) -> ( abs ` ( v - D ) ) e. RR ) |
60 |
39
|
rpred |
|- ( ( ( ph /\ y e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ ( A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) ) ) -> if ( a <_ b , a , b ) e. RR ) |
61 |
60
|
3ad2ant1 |
|- ( ( ( ( ph /\ y e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ ( A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) ) ) /\ v e. A /\ ( v =/= D /\ ( abs ` ( v - D ) ) < if ( a <_ b , a , b ) ) ) -> if ( a <_ b , a , b ) e. RR ) |
62 |
|
simpl |
|- ( ( a e. RR+ /\ b e. RR+ ) -> a e. RR+ ) |
63 |
62
|
rpred |
|- ( ( a e. RR+ /\ b e. RR+ ) -> a e. RR ) |
64 |
63
|
3ad2ant2 |
|- ( ( ( ph /\ y e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ ( A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) ) ) -> a e. RR ) |
65 |
64
|
3ad2ant1 |
|- ( ( ( ( ph /\ y e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ ( A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) ) ) /\ v e. A /\ ( v =/= D /\ ( abs ` ( v - D ) ) < if ( a <_ b , a , b ) ) ) -> a e. RR ) |
66 |
|
simp3r |
|- ( ( ( ( ph /\ y e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ ( A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) ) ) /\ v e. A /\ ( v =/= D /\ ( abs ` ( v - D ) ) < if ( a <_ b , a , b ) ) ) -> ( abs ` ( v - D ) ) < if ( a <_ b , a , b ) ) |
67 |
|
simpr |
|- ( ( a e. RR+ /\ b e. RR+ ) -> b e. RR+ ) |
68 |
67
|
rpred |
|- ( ( a e. RR+ /\ b e. RR+ ) -> b e. RR ) |
69 |
|
min1 |
|- ( ( a e. RR /\ b e. RR ) -> if ( a <_ b , a , b ) <_ a ) |
70 |
63 68 69
|
syl2anc |
|- ( ( a e. RR+ /\ b e. RR+ ) -> if ( a <_ b , a , b ) <_ a ) |
71 |
70
|
3ad2ant2 |
|- ( ( ( ph /\ y e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ ( A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) ) ) -> if ( a <_ b , a , b ) <_ a ) |
72 |
71
|
3ad2ant1 |
|- ( ( ( ( ph /\ y e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ ( A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) ) ) /\ v e. A /\ ( v =/= D /\ ( abs ` ( v - D ) ) < if ( a <_ b , a , b ) ) ) -> if ( a <_ b , a , b ) <_ a ) |
73 |
59 61 65 66 72
|
ltletrd |
|- ( ( ( ( ph /\ y e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ ( A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) ) ) /\ v e. A /\ ( v =/= D /\ ( abs ` ( v - D ) ) < if ( a <_ b , a , b ) ) ) -> ( abs ` ( v - D ) ) < a ) |
74 |
54 73
|
jca |
|- ( ( ( ( ph /\ y e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ ( A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) ) ) /\ v e. A /\ ( v =/= D /\ ( abs ` ( v - D ) ) < if ( a <_ b , a , b ) ) ) -> ( v =/= D /\ ( abs ` ( v - D ) ) < a ) ) |
75 |
|
rsp |
|- ( A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) -> ( v e. A -> ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) ) ) |
76 |
53 47 74 75
|
syl3c |
|- ( ( ( ( ph /\ y e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ ( A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) ) ) /\ v e. A /\ ( v =/= D /\ ( abs ` ( v - D ) ) < if ( a <_ b , a , b ) ) ) -> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) |
77 |
48 52 76
|
jca31 |
|- ( ( ( ( ph /\ y e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ ( A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) ) ) /\ v e. A /\ ( v =/= D /\ ( abs ` ( v - D ) ) < if ( a <_ b , a , b ) ) ) -> ( ( ( ph /\ v e. A ) /\ y e. RR ) /\ ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) ) |
78 |
|
simp13r |
|- ( ( ( ( ph /\ y e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ ( A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) ) ) /\ v e. A /\ ( v =/= D /\ ( abs ` ( v - D ) ) < if ( a <_ b , a , b ) ) ) -> A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) ) |
79 |
68
|
3ad2ant2 |
|- ( ( ( ph /\ y e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ ( A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) ) ) -> b e. RR ) |
80 |
79
|
3ad2ant1 |
|- ( ( ( ( ph /\ y e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ ( A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) ) ) /\ v e. A /\ ( v =/= D /\ ( abs ` ( v - D ) ) < if ( a <_ b , a , b ) ) ) -> b e. RR ) |
81 |
|
min2 |
|- ( ( a e. RR /\ b e. RR ) -> if ( a <_ b , a , b ) <_ b ) |
82 |
63 68 81
|
syl2anc |
|- ( ( a e. RR+ /\ b e. RR+ ) -> if ( a <_ b , a , b ) <_ b ) |
83 |
82
|
3ad2ant2 |
|- ( ( ( ph /\ y e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ ( A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) ) ) -> if ( a <_ b , a , b ) <_ b ) |
84 |
83
|
3ad2ant1 |
|- ( ( ( ( ph /\ y e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ ( A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) ) ) /\ v e. A /\ ( v =/= D /\ ( abs ` ( v - D ) ) < if ( a <_ b , a , b ) ) ) -> if ( a <_ b , a , b ) <_ b ) |
85 |
59 61 80 66 84
|
ltletrd |
|- ( ( ( ( ph /\ y e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ ( A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) ) ) /\ v e. A /\ ( v =/= D /\ ( abs ` ( v - D ) ) < if ( a <_ b , a , b ) ) ) -> ( abs ` ( v - D ) ) < b ) |
86 |
54 85
|
jca |
|- ( ( ( ( ph /\ y e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ ( A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) ) ) /\ v e. A /\ ( v =/= D /\ ( abs ` ( v - D ) ) < if ( a <_ b , a , b ) ) ) -> ( v =/= D /\ ( abs ` ( v - D ) ) < b ) ) |
87 |
|
rsp |
|- ( A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) -> ( v e. A -> ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) ) ) |
88 |
78 47 86 87
|
syl3c |
|- ( ( ( ( ph /\ y e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ ( A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) ) ) /\ v e. A /\ ( v =/= D /\ ( abs ` ( v - D ) ) < if ( a <_ b , a , b ) ) ) -> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) |
89 |
4 5
|
addcld |
|- ( ( ph /\ x e. A ) -> ( B + C ) e. CC ) |
90 |
89 3
|
fmptd |
|- ( ph -> H : A --> CC ) |
91 |
90
|
ffvelrnda |
|- ( ( ph /\ v e. A ) -> ( H ` v ) e. CC ) |
92 |
91
|
ad3antrrr |
|- ( ( ( ( ( ph /\ v e. A ) /\ y e. RR ) /\ ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) -> ( H ` v ) e. CC ) |
93 |
|
simp-4l |
|- ( ( ( ( ( ph /\ v e. A ) /\ y e. RR ) /\ ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) -> ph ) |
94 |
93 12
|
syl |
|- ( ( ( ( ( ph /\ v e. A ) /\ y e. RR ) /\ ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) -> ( E + I ) e. CC ) |
95 |
92 94
|
subcld |
|- ( ( ( ( ( ph /\ v e. A ) /\ y e. RR ) /\ ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) -> ( ( H ` v ) - ( E + I ) ) e. CC ) |
96 |
95
|
abscld |
|- ( ( ( ( ( ph /\ v e. A ) /\ y e. RR ) /\ ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) -> ( abs ` ( ( H ` v ) - ( E + I ) ) ) e. RR ) |
97 |
13
|
ffvelrnda |
|- ( ( ph /\ v e. A ) -> ( F ` v ) e. CC ) |
98 |
97
|
ad3antrrr |
|- ( ( ( ( ( ph /\ v e. A ) /\ y e. RR ) /\ ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) -> ( F ` v ) e. CC ) |
99 |
93 9
|
syl |
|- ( ( ( ( ( ph /\ v e. A ) /\ y e. RR ) /\ ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) -> E e. CC ) |
100 |
98 99
|
subcld |
|- ( ( ( ( ( ph /\ v e. A ) /\ y e. RR ) /\ ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) -> ( ( F ` v ) - E ) e. CC ) |
101 |
100
|
abscld |
|- ( ( ( ( ( ph /\ v e. A ) /\ y e. RR ) /\ ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) -> ( abs ` ( ( F ` v ) - E ) ) e. RR ) |
102 |
27
|
ffvelrnda |
|- ( ( ph /\ v e. A ) -> ( G ` v ) e. CC ) |
103 |
102
|
ad3antrrr |
|- ( ( ( ( ( ph /\ v e. A ) /\ y e. RR ) /\ ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) -> ( G ` v ) e. CC ) |
104 |
93 11
|
syl |
|- ( ( ( ( ( ph /\ v e. A ) /\ y e. RR ) /\ ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) -> I e. CC ) |
105 |
103 104
|
subcld |
|- ( ( ( ( ( ph /\ v e. A ) /\ y e. RR ) /\ ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) -> ( ( G ` v ) - I ) e. CC ) |
106 |
105
|
abscld |
|- ( ( ( ( ( ph /\ v e. A ) /\ y e. RR ) /\ ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) -> ( abs ` ( ( G ` v ) - I ) ) e. RR ) |
107 |
101 106
|
readdcld |
|- ( ( ( ( ( ph /\ v e. A ) /\ y e. RR ) /\ ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) -> ( ( abs ` ( ( F ` v ) - E ) ) + ( abs ` ( ( G ` v ) - I ) ) ) e. RR ) |
108 |
|
simpllr |
|- ( ( ( ( ( ph /\ v e. A ) /\ y e. RR ) /\ ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) -> y e. RR ) |
109 |
|
nfv |
|- F/ x ( ph /\ v e. A ) |
110 |
|
nfmpt1 |
|- F/_ x ( x e. A |-> ( B + C ) ) |
111 |
3 110
|
nfcxfr |
|- F/_ x H |
112 |
|
nfcv |
|- F/_ x v |
113 |
111 112
|
nffv |
|- F/_ x ( H ` v ) |
114 |
|
nfmpt1 |
|- F/_ x ( x e. A |-> B ) |
115 |
1 114
|
nfcxfr |
|- F/_ x F |
116 |
115 112
|
nffv |
|- F/_ x ( F ` v ) |
117 |
|
nfcv |
|- F/_ x + |
118 |
|
nfmpt1 |
|- F/_ x ( x e. A |-> C ) |
119 |
2 118
|
nfcxfr |
|- F/_ x G |
120 |
119 112
|
nffv |
|- F/_ x ( G ` v ) |
121 |
116 117 120
|
nfov |
|- F/_ x ( ( F ` v ) + ( G ` v ) ) |
122 |
113 121
|
nfeq |
|- F/ x ( H ` v ) = ( ( F ` v ) + ( G ` v ) ) |
123 |
109 122
|
nfim |
|- F/ x ( ( ph /\ v e. A ) -> ( H ` v ) = ( ( F ` v ) + ( G ` v ) ) ) |
124 |
|
eleq1w |
|- ( x = v -> ( x e. A <-> v e. A ) ) |
125 |
124
|
anbi2d |
|- ( x = v -> ( ( ph /\ x e. A ) <-> ( ph /\ v e. A ) ) ) |
126 |
|
fveq2 |
|- ( x = v -> ( H ` x ) = ( H ` v ) ) |
127 |
|
fveq2 |
|- ( x = v -> ( F ` x ) = ( F ` v ) ) |
128 |
|
fveq2 |
|- ( x = v -> ( G ` x ) = ( G ` v ) ) |
129 |
127 128
|
oveq12d |
|- ( x = v -> ( ( F ` x ) + ( G ` x ) ) = ( ( F ` v ) + ( G ` v ) ) ) |
130 |
126 129
|
eqeq12d |
|- ( x = v -> ( ( H ` x ) = ( ( F ` x ) + ( G ` x ) ) <-> ( H ` v ) = ( ( F ` v ) + ( G ` v ) ) ) ) |
131 |
125 130
|
imbi12d |
|- ( x = v -> ( ( ( ph /\ x e. A ) -> ( H ` x ) = ( ( F ` x ) + ( G ` x ) ) ) <-> ( ( ph /\ v e. A ) -> ( H ` v ) = ( ( F ` v ) + ( G ` v ) ) ) ) ) |
132 |
|
simpr |
|- ( ( ph /\ x e. A ) -> x e. A ) |
133 |
3
|
fvmpt2 |
|- ( ( x e. A /\ ( B + C ) e. CC ) -> ( H ` x ) = ( B + C ) ) |
134 |
132 89 133
|
syl2anc |
|- ( ( ph /\ x e. A ) -> ( H ` x ) = ( B + C ) ) |
135 |
1
|
fvmpt2 |
|- ( ( x e. A /\ B e. CC ) -> ( F ` x ) = B ) |
136 |
132 4 135
|
syl2anc |
|- ( ( ph /\ x e. A ) -> ( F ` x ) = B ) |
137 |
136
|
eqcomd |
|- ( ( ph /\ x e. A ) -> B = ( F ` x ) ) |
138 |
2
|
fvmpt2 |
|- ( ( x e. A /\ C e. CC ) -> ( G ` x ) = C ) |
139 |
132 5 138
|
syl2anc |
|- ( ( ph /\ x e. A ) -> ( G ` x ) = C ) |
140 |
139
|
eqcomd |
|- ( ( ph /\ x e. A ) -> C = ( G ` x ) ) |
141 |
137 140
|
oveq12d |
|- ( ( ph /\ x e. A ) -> ( B + C ) = ( ( F ` x ) + ( G ` x ) ) ) |
142 |
134 141
|
eqtrd |
|- ( ( ph /\ x e. A ) -> ( H ` x ) = ( ( F ` x ) + ( G ` x ) ) ) |
143 |
123 131 142
|
chvarfv |
|- ( ( ph /\ v e. A ) -> ( H ` v ) = ( ( F ` v ) + ( G ` v ) ) ) |
144 |
143
|
ad3antrrr |
|- ( ( ( ( ( ph /\ v e. A ) /\ y e. RR ) /\ ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) -> ( H ` v ) = ( ( F ` v ) + ( G ` v ) ) ) |
145 |
144
|
oveq1d |
|- ( ( ( ( ( ph /\ v e. A ) /\ y e. RR ) /\ ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) -> ( ( H ` v ) - ( E + I ) ) = ( ( ( F ` v ) + ( G ` v ) ) - ( E + I ) ) ) |
146 |
98 103 99 104
|
addsub4d |
|- ( ( ( ( ( ph /\ v e. A ) /\ y e. RR ) /\ ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) -> ( ( ( F ` v ) + ( G ` v ) ) - ( E + I ) ) = ( ( ( F ` v ) - E ) + ( ( G ` v ) - I ) ) ) |
147 |
145 146
|
eqtrd |
|- ( ( ( ( ( ph /\ v e. A ) /\ y e. RR ) /\ ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) -> ( ( H ` v ) - ( E + I ) ) = ( ( ( F ` v ) - E ) + ( ( G ` v ) - I ) ) ) |
148 |
147
|
fveq2d |
|- ( ( ( ( ( ph /\ v e. A ) /\ y e. RR ) /\ ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) -> ( abs ` ( ( H ` v ) - ( E + I ) ) ) = ( abs ` ( ( ( F ` v ) - E ) + ( ( G ` v ) - I ) ) ) ) |
149 |
100 105
|
abstrid |
|- ( ( ( ( ( ph /\ v e. A ) /\ y e. RR ) /\ ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) -> ( abs ` ( ( ( F ` v ) - E ) + ( ( G ` v ) - I ) ) ) <_ ( ( abs ` ( ( F ` v ) - E ) ) + ( abs ` ( ( G ` v ) - I ) ) ) ) |
150 |
148 149
|
eqbrtrd |
|- ( ( ( ( ( ph /\ v e. A ) /\ y e. RR ) /\ ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) -> ( abs ` ( ( H ` v ) - ( E + I ) ) ) <_ ( ( abs ` ( ( F ` v ) - E ) ) + ( abs ` ( ( G ` v ) - I ) ) ) ) |
151 |
|
simplr |
|- ( ( ( ( ( ph /\ v e. A ) /\ y e. RR ) /\ ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) -> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) |
152 |
|
simpr |
|- ( ( ( ( ( ph /\ v e. A ) /\ y e. RR ) /\ ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) -> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) |
153 |
101 106 108 151 152
|
lt2halvesd |
|- ( ( ( ( ( ph /\ v e. A ) /\ y e. RR ) /\ ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) -> ( ( abs ` ( ( F ` v ) - E ) ) + ( abs ` ( ( G ` v ) - I ) ) ) < y ) |
154 |
96 107 108 150 153
|
lelttrd |
|- ( ( ( ( ( ph /\ v e. A ) /\ y e. RR ) /\ ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) -> ( abs ` ( ( H ` v ) - ( E + I ) ) ) < y ) |
155 |
77 88 154
|
syl2anc |
|- ( ( ( ( ph /\ y e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ ( A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) ) ) /\ v e. A /\ ( v =/= D /\ ( abs ` ( v - D ) ) < if ( a <_ b , a , b ) ) ) -> ( abs ` ( ( H ` v ) - ( E + I ) ) ) < y ) |
156 |
155
|
3exp |
|- ( ( ( ph /\ y e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ ( A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) ) ) -> ( v e. A -> ( ( v =/= D /\ ( abs ` ( v - D ) ) < if ( a <_ b , a , b ) ) -> ( abs ` ( ( H ` v ) - ( E + I ) ) ) < y ) ) ) |
157 |
45 156
|
ralrimi |
|- ( ( ( ph /\ y e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ ( A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) ) ) -> A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < if ( a <_ b , a , b ) ) -> ( abs ` ( ( H ` v ) - ( E + I ) ) ) < y ) ) |
158 |
|
brimralrspcev |
|- ( ( if ( a <_ b , a , b ) e. RR+ /\ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < if ( a <_ b , a , b ) ) -> ( abs ` ( ( H ` v ) - ( E + I ) ) ) < y ) ) -> E. w e. RR+ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < w ) -> ( abs ` ( ( H ` v ) - ( E + I ) ) ) < y ) ) |
159 |
39 157 158
|
syl2anc |
|- ( ( ( ph /\ y e. RR+ ) /\ ( a e. RR+ /\ b e. RR+ ) /\ ( A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) ) ) -> E. w e. RR+ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < w ) -> ( abs ` ( ( H ` v ) - ( E + I ) ) ) < y ) ) |
160 |
159
|
3exp |
|- ( ( ph /\ y e. RR+ ) -> ( ( a e. RR+ /\ b e. RR+ ) -> ( ( A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) ) -> E. w e. RR+ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < w ) -> ( abs ` ( ( H ` v ) - ( E + I ) ) ) < y ) ) ) ) |
161 |
160
|
rexlimdvv |
|- ( ( ph /\ y e. RR+ ) -> ( E. a e. RR+ E. b e. RR+ ( A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < a ) -> ( abs ` ( ( F ` v ) - E ) ) < ( y / 2 ) ) /\ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < b ) -> ( abs ` ( ( G ` v ) - I ) ) < ( y / 2 ) ) ) -> E. w e. RR+ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < w ) -> ( abs ` ( ( H ` v ) - ( E + I ) ) ) < y ) ) ) |
162 |
37 161
|
mpd |
|- ( ( ph /\ y e. RR+ ) -> E. w e. RR+ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < w ) -> ( abs ` ( ( H ` v ) - ( E + I ) ) ) < y ) ) |
163 |
162
|
ralrimiva |
|- ( ph -> A. y e. RR+ E. w e. RR+ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < w ) -> ( abs ` ( ( H ` v ) - ( E + I ) ) ) < y ) ) |
164 |
90 14 17
|
ellimc3 |
|- ( ph -> ( ( E + I ) e. ( H limCC D ) <-> ( ( E + I ) e. CC /\ A. y e. RR+ E. w e. RR+ A. v e. A ( ( v =/= D /\ ( abs ` ( v - D ) ) < w ) -> ( abs ` ( ( H ` v ) - ( E + I ) ) ) < y ) ) ) ) |
165 |
12 163 164
|
mpbir2and |
|- ( ph -> ( E + I ) e. ( H limCC D ) ) |