Step |
Hyp |
Ref |
Expression |
1 |
|
addlsub.a |
|- ( ph -> A e. CC ) |
2 |
|
addlsub.b |
|- ( ph -> B e. CC ) |
3 |
|
addlsub.c |
|- ( ph -> C e. CC ) |
4 |
|
oveq1 |
|- ( ( A + B ) = C -> ( ( A + B ) - B ) = ( C - B ) ) |
5 |
1 2
|
pncand |
|- ( ph -> ( ( A + B ) - B ) = A ) |
6 |
|
eqtr2 |
|- ( ( ( ( A + B ) - B ) = ( C - B ) /\ ( ( A + B ) - B ) = A ) -> ( C - B ) = A ) |
7 |
6
|
eqcomd |
|- ( ( ( ( A + B ) - B ) = ( C - B ) /\ ( ( A + B ) - B ) = A ) -> A = ( C - B ) ) |
8 |
7
|
a1i |
|- ( ph -> ( ( ( ( A + B ) - B ) = ( C - B ) /\ ( ( A + B ) - B ) = A ) -> A = ( C - B ) ) ) |
9 |
5 8
|
mpan2d |
|- ( ph -> ( ( ( A + B ) - B ) = ( C - B ) -> A = ( C - B ) ) ) |
10 |
4 9
|
syl5 |
|- ( ph -> ( ( A + B ) = C -> A = ( C - B ) ) ) |
11 |
|
oveq1 |
|- ( A = ( C - B ) -> ( A + B ) = ( ( C - B ) + B ) ) |
12 |
3 2
|
npcand |
|- ( ph -> ( ( C - B ) + B ) = C ) |
13 |
|
eqtr |
|- ( ( ( A + B ) = ( ( C - B ) + B ) /\ ( ( C - B ) + B ) = C ) -> ( A + B ) = C ) |
14 |
13
|
a1i |
|- ( ph -> ( ( ( A + B ) = ( ( C - B ) + B ) /\ ( ( C - B ) + B ) = C ) -> ( A + B ) = C ) ) |
15 |
12 14
|
mpan2d |
|- ( ph -> ( ( A + B ) = ( ( C - B ) + B ) -> ( A + B ) = C ) ) |
16 |
11 15
|
syl5 |
|- ( ph -> ( A = ( C - B ) -> ( A + B ) = C ) ) |
17 |
10 16
|
impbid |
|- ( ph -> ( ( A + B ) = C <-> A = ( C - B ) ) ) |