| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0cn |  |-  ( A e. NN0 -> A e. CC ) | 
						
							| 2 |  | nncn |  |-  ( M e. NN -> M e. CC ) | 
						
							| 3 |  | addcom |  |-  ( ( A e. CC /\ M e. CC ) -> ( A + M ) = ( M + A ) ) | 
						
							| 4 | 1 2 3 | syl2an |  |-  ( ( A e. NN0 /\ M e. NN ) -> ( A + M ) = ( M + A ) ) | 
						
							| 5 | 4 | 3adant3 |  |-  ( ( A e. NN0 /\ M e. NN /\ A < M ) -> ( A + M ) = ( M + A ) ) | 
						
							| 6 | 5 | oveq1d |  |-  ( ( A e. NN0 /\ M e. NN /\ A < M ) -> ( ( A + M ) mod M ) = ( ( M + A ) mod M ) ) | 
						
							| 7 |  | addmodid |  |-  ( ( A e. NN0 /\ M e. NN /\ A < M ) -> ( ( M + A ) mod M ) = A ) | 
						
							| 8 | 6 7 | eqtrd |  |-  ( ( A e. NN0 /\ M e. NN /\ A < M ) -> ( ( A + M ) mod M ) = A ) |