Description: Addition with product with minus one is a subtraction. (Contributed by AV, 18-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | addneg1mul | |- ( ( A e. CC /\ B e. CC ) -> ( A + ( -u 1 x. B ) ) = ( A - B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulm1 | |- ( B e. CC -> ( -u 1 x. B ) = -u B ) |
|
2 | 1 | adantl | |- ( ( A e. CC /\ B e. CC ) -> ( -u 1 x. B ) = -u B ) |
3 | 2 | oveq2d | |- ( ( A e. CC /\ B e. CC ) -> ( A + ( -u 1 x. B ) ) = ( A + -u B ) ) |
4 | negsub | |- ( ( A e. CC /\ B e. CC ) -> ( A + -u B ) = ( A - B ) ) |
|
5 | 3 4 | eqtrd | |- ( ( A e. CC /\ B e. CC ) -> ( A + ( -u 1 x. B ) ) = ( A - B ) ) |