Metamath Proof Explorer


Theorem addneg1mul

Description: Addition with product with minus one is a subtraction. (Contributed by AV, 18-Oct-2021)

Ref Expression
Assertion addneg1mul
|- ( ( A e. CC /\ B e. CC ) -> ( A + ( -u 1 x. B ) ) = ( A - B ) )

Proof

Step Hyp Ref Expression
1 mulm1
 |-  ( B e. CC -> ( -u 1 x. B ) = -u B )
2 1 adantl
 |-  ( ( A e. CC /\ B e. CC ) -> ( -u 1 x. B ) = -u B )
3 2 oveq2d
 |-  ( ( A e. CC /\ B e. CC ) -> ( A + ( -u 1 x. B ) ) = ( A + -u B ) )
4 negsub
 |-  ( ( A e. CC /\ B e. CC ) -> ( A + -u B ) = ( A - B ) )
5 3 4 eqtrd
 |-  ( ( A e. CC /\ B e. CC ) -> ( A + ( -u 1 x. B ) ) = ( A - B ) )