Metamath Proof Explorer


Theorem addneintr2d

Description: Introducing a term on the right-hand side of a sum in a negated equality. Contrapositive of addcan2ad . Consequence of addcan2d . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses muld.1
|- ( ph -> A e. CC )
addcomd.2
|- ( ph -> B e. CC )
addcand.3
|- ( ph -> C e. CC )
addneintr2d.4
|- ( ph -> A =/= B )
Assertion addneintr2d
|- ( ph -> ( A + C ) =/= ( B + C ) )

Proof

Step Hyp Ref Expression
1 muld.1
 |-  ( ph -> A e. CC )
2 addcomd.2
 |-  ( ph -> B e. CC )
3 addcand.3
 |-  ( ph -> C e. CC )
4 addneintr2d.4
 |-  ( ph -> A =/= B )
5 1 2 3 addcan2d
 |-  ( ph -> ( ( A + C ) = ( B + C ) <-> A = B ) )
6 5 necon3bid
 |-  ( ph -> ( ( A + C ) =/= ( B + C ) <-> A =/= B ) )
7 4 6 mpbird
 |-  ( ph -> ( A + C ) =/= ( B + C ) )