Description: Introducing a term on the right-hand side of a sum in a negated equality. Contrapositive of addcan2ad . Consequence of addcan2d . (Contributed by David Moews, 28-Feb-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | muld.1 | |- ( ph -> A e. CC ) |
|
addcomd.2 | |- ( ph -> B e. CC ) |
||
addcand.3 | |- ( ph -> C e. CC ) |
||
addneintr2d.4 | |- ( ph -> A =/= B ) |
||
Assertion | addneintr2d | |- ( ph -> ( A + C ) =/= ( B + C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | muld.1 | |- ( ph -> A e. CC ) |
|
2 | addcomd.2 | |- ( ph -> B e. CC ) |
|
3 | addcand.3 | |- ( ph -> C e. CC ) |
|
4 | addneintr2d.4 | |- ( ph -> A =/= B ) |
|
5 | 1 2 3 | addcan2d | |- ( ph -> ( ( A + C ) = ( B + C ) <-> A = B ) ) |
6 | 5 | necon3bid | |- ( ph -> ( ( A + C ) =/= ( B + C ) <-> A =/= B ) ) |
7 | 4 6 | mpbird | |- ( ph -> ( A + C ) =/= ( B + C ) ) |