| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xp1st |  |-  ( x e. ( N. X. N. ) -> ( 1st ` x ) e. N. ) | 
						
							| 2 |  | xp2nd |  |-  ( y e. ( N. X. N. ) -> ( 2nd ` y ) e. N. ) | 
						
							| 3 |  | mulclpi |  |-  ( ( ( 1st ` x ) e. N. /\ ( 2nd ` y ) e. N. ) -> ( ( 1st ` x ) .N ( 2nd ` y ) ) e. N. ) | 
						
							| 4 | 1 2 3 | syl2an |  |-  ( ( x e. ( N. X. N. ) /\ y e. ( N. X. N. ) ) -> ( ( 1st ` x ) .N ( 2nd ` y ) ) e. N. ) | 
						
							| 5 |  | xp1st |  |-  ( y e. ( N. X. N. ) -> ( 1st ` y ) e. N. ) | 
						
							| 6 |  | xp2nd |  |-  ( x e. ( N. X. N. ) -> ( 2nd ` x ) e. N. ) | 
						
							| 7 |  | mulclpi |  |-  ( ( ( 1st ` y ) e. N. /\ ( 2nd ` x ) e. N. ) -> ( ( 1st ` y ) .N ( 2nd ` x ) ) e. N. ) | 
						
							| 8 | 5 6 7 | syl2anr |  |-  ( ( x e. ( N. X. N. ) /\ y e. ( N. X. N. ) ) -> ( ( 1st ` y ) .N ( 2nd ` x ) ) e. N. ) | 
						
							| 9 |  | addclpi |  |-  ( ( ( ( 1st ` x ) .N ( 2nd ` y ) ) e. N. /\ ( ( 1st ` y ) .N ( 2nd ` x ) ) e. N. ) -> ( ( ( 1st ` x ) .N ( 2nd ` y ) ) +N ( ( 1st ` y ) .N ( 2nd ` x ) ) ) e. N. ) | 
						
							| 10 | 4 8 9 | syl2anc |  |-  ( ( x e. ( N. X. N. ) /\ y e. ( N. X. N. ) ) -> ( ( ( 1st ` x ) .N ( 2nd ` y ) ) +N ( ( 1st ` y ) .N ( 2nd ` x ) ) ) e. N. ) | 
						
							| 11 |  | mulclpi |  |-  ( ( ( 2nd ` x ) e. N. /\ ( 2nd ` y ) e. N. ) -> ( ( 2nd ` x ) .N ( 2nd ` y ) ) e. N. ) | 
						
							| 12 | 6 2 11 | syl2an |  |-  ( ( x e. ( N. X. N. ) /\ y e. ( N. X. N. ) ) -> ( ( 2nd ` x ) .N ( 2nd ` y ) ) e. N. ) | 
						
							| 13 | 10 12 | opelxpd |  |-  ( ( x e. ( N. X. N. ) /\ y e. ( N. X. N. ) ) -> <. ( ( ( 1st ` x ) .N ( 2nd ` y ) ) +N ( ( 1st ` y ) .N ( 2nd ` x ) ) ) , ( ( 2nd ` x ) .N ( 2nd ` y ) ) >. e. ( N. X. N. ) ) | 
						
							| 14 | 13 | rgen2 |  |-  A. x e. ( N. X. N. ) A. y e. ( N. X. N. ) <. ( ( ( 1st ` x ) .N ( 2nd ` y ) ) +N ( ( 1st ` y ) .N ( 2nd ` x ) ) ) , ( ( 2nd ` x ) .N ( 2nd ` y ) ) >. e. ( N. X. N. ) | 
						
							| 15 |  | df-plpq |  |-  +pQ = ( x e. ( N. X. N. ) , y e. ( N. X. N. ) |-> <. ( ( ( 1st ` x ) .N ( 2nd ` y ) ) +N ( ( 1st ` y ) .N ( 2nd ` x ) ) ) , ( ( 2nd ` x ) .N ( 2nd ` y ) ) >. ) | 
						
							| 16 | 15 | fmpo |  |-  ( A. x e. ( N. X. N. ) A. y e. ( N. X. N. ) <. ( ( ( 1st ` x ) .N ( 2nd ` y ) ) +N ( ( 1st ` y ) .N ( 2nd ` x ) ) ) , ( ( 2nd ` x ) .N ( 2nd ` y ) ) >. e. ( N. X. N. ) <-> +pQ : ( ( N. X. N. ) X. ( N. X. N. ) ) --> ( N. X. N. ) ) | 
						
							| 17 | 14 16 | mpbi |  |-  +pQ : ( ( N. X. N. ) X. ( N. X. N. ) ) --> ( N. X. N. ) |