| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1re |
|- 1 e. RR |
| 2 |
|
ax-rnegex |
|- ( 1 e. RR -> E. c e. RR ( 1 + c ) = 0 ) |
| 3 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 4 |
|
oveq2 |
|- ( c = 0 -> ( 1 + c ) = ( 1 + 0 ) ) |
| 5 |
4
|
eqeq1d |
|- ( c = 0 -> ( ( 1 + c ) = 0 <-> ( 1 + 0 ) = 0 ) ) |
| 6 |
5
|
biimpcd |
|- ( ( 1 + c ) = 0 -> ( c = 0 -> ( 1 + 0 ) = 0 ) ) |
| 7 |
|
oveq2 |
|- ( ( 1 + 0 ) = 0 -> ( ( ( _i x. _i ) x. ( _i x. _i ) ) x. ( 1 + 0 ) ) = ( ( ( _i x. _i ) x. ( _i x. _i ) ) x. 0 ) ) |
| 8 |
|
ax-icn |
|- _i e. CC |
| 9 |
8 8
|
mulcli |
|- ( _i x. _i ) e. CC |
| 10 |
9 9
|
mulcli |
|- ( ( _i x. _i ) x. ( _i x. _i ) ) e. CC |
| 11 |
|
ax-1cn |
|- 1 e. CC |
| 12 |
|
0cn |
|- 0 e. CC |
| 13 |
10 11 12
|
adddii |
|- ( ( ( _i x. _i ) x. ( _i x. _i ) ) x. ( 1 + 0 ) ) = ( ( ( ( _i x. _i ) x. ( _i x. _i ) ) x. 1 ) + ( ( ( _i x. _i ) x. ( _i x. _i ) ) x. 0 ) ) |
| 14 |
10
|
mulridi |
|- ( ( ( _i x. _i ) x. ( _i x. _i ) ) x. 1 ) = ( ( _i x. _i ) x. ( _i x. _i ) ) |
| 15 |
|
mul01 |
|- ( ( ( _i x. _i ) x. ( _i x. _i ) ) e. CC -> ( ( ( _i x. _i ) x. ( _i x. _i ) ) x. 0 ) = 0 ) |
| 16 |
10 15
|
ax-mp |
|- ( ( ( _i x. _i ) x. ( _i x. _i ) ) x. 0 ) = 0 |
| 17 |
|
ax-i2m1 |
|- ( ( _i x. _i ) + 1 ) = 0 |
| 18 |
16 17
|
eqtr4i |
|- ( ( ( _i x. _i ) x. ( _i x. _i ) ) x. 0 ) = ( ( _i x. _i ) + 1 ) |
| 19 |
14 18
|
oveq12i |
|- ( ( ( ( _i x. _i ) x. ( _i x. _i ) ) x. 1 ) + ( ( ( _i x. _i ) x. ( _i x. _i ) ) x. 0 ) ) = ( ( ( _i x. _i ) x. ( _i x. _i ) ) + ( ( _i x. _i ) + 1 ) ) |
| 20 |
13 19
|
eqtri |
|- ( ( ( _i x. _i ) x. ( _i x. _i ) ) x. ( 1 + 0 ) ) = ( ( ( _i x. _i ) x. ( _i x. _i ) ) + ( ( _i x. _i ) + 1 ) ) |
| 21 |
20 16
|
eqeq12i |
|- ( ( ( ( _i x. _i ) x. ( _i x. _i ) ) x. ( 1 + 0 ) ) = ( ( ( _i x. _i ) x. ( _i x. _i ) ) x. 0 ) <-> ( ( ( _i x. _i ) x. ( _i x. _i ) ) + ( ( _i x. _i ) + 1 ) ) = 0 ) |
| 22 |
10 9 11
|
addassi |
|- ( ( ( ( _i x. _i ) x. ( _i x. _i ) ) + ( _i x. _i ) ) + 1 ) = ( ( ( _i x. _i ) x. ( _i x. _i ) ) + ( ( _i x. _i ) + 1 ) ) |
| 23 |
9
|
mulridi |
|- ( ( _i x. _i ) x. 1 ) = ( _i x. _i ) |
| 24 |
23
|
oveq2i |
|- ( ( ( _i x. _i ) x. ( _i x. _i ) ) + ( ( _i x. _i ) x. 1 ) ) = ( ( ( _i x. _i ) x. ( _i x. _i ) ) + ( _i x. _i ) ) |
| 25 |
9 9 11
|
adddii |
|- ( ( _i x. _i ) x. ( ( _i x. _i ) + 1 ) ) = ( ( ( _i x. _i ) x. ( _i x. _i ) ) + ( ( _i x. _i ) x. 1 ) ) |
| 26 |
17
|
oveq2i |
|- ( ( _i x. _i ) x. ( ( _i x. _i ) + 1 ) ) = ( ( _i x. _i ) x. 0 ) |
| 27 |
|
mul01 |
|- ( ( _i x. _i ) e. CC -> ( ( _i x. _i ) x. 0 ) = 0 ) |
| 28 |
9 27
|
ax-mp |
|- ( ( _i x. _i ) x. 0 ) = 0 |
| 29 |
26 28
|
eqtri |
|- ( ( _i x. _i ) x. ( ( _i x. _i ) + 1 ) ) = 0 |
| 30 |
25 29
|
eqtr3i |
|- ( ( ( _i x. _i ) x. ( _i x. _i ) ) + ( ( _i x. _i ) x. 1 ) ) = 0 |
| 31 |
24 30
|
eqtr3i |
|- ( ( ( _i x. _i ) x. ( _i x. _i ) ) + ( _i x. _i ) ) = 0 |
| 32 |
31
|
oveq1i |
|- ( ( ( ( _i x. _i ) x. ( _i x. _i ) ) + ( _i x. _i ) ) + 1 ) = ( 0 + 1 ) |
| 33 |
22 32
|
eqtr3i |
|- ( ( ( _i x. _i ) x. ( _i x. _i ) ) + ( ( _i x. _i ) + 1 ) ) = ( 0 + 1 ) |
| 34 |
|
00id |
|- ( 0 + 0 ) = 0 |
| 35 |
34
|
eqcomi |
|- 0 = ( 0 + 0 ) |
| 36 |
33 35
|
eqeq12i |
|- ( ( ( ( _i x. _i ) x. ( _i x. _i ) ) + ( ( _i x. _i ) + 1 ) ) = 0 <-> ( 0 + 1 ) = ( 0 + 0 ) ) |
| 37 |
|
0re |
|- 0 e. RR |
| 38 |
|
readdcan |
|- ( ( 1 e. RR /\ 0 e. RR /\ 0 e. RR ) -> ( ( 0 + 1 ) = ( 0 + 0 ) <-> 1 = 0 ) ) |
| 39 |
1 37 37 38
|
mp3an |
|- ( ( 0 + 1 ) = ( 0 + 0 ) <-> 1 = 0 ) |
| 40 |
21 36 39
|
3bitri |
|- ( ( ( ( _i x. _i ) x. ( _i x. _i ) ) x. ( 1 + 0 ) ) = ( ( ( _i x. _i ) x. ( _i x. _i ) ) x. 0 ) <-> 1 = 0 ) |
| 41 |
7 40
|
sylib |
|- ( ( 1 + 0 ) = 0 -> 1 = 0 ) |
| 42 |
6 41
|
syl6 |
|- ( ( 1 + c ) = 0 -> ( c = 0 -> 1 = 0 ) ) |
| 43 |
42
|
necon3d |
|- ( ( 1 + c ) = 0 -> ( 1 =/= 0 -> c =/= 0 ) ) |
| 44 |
3 43
|
mpi |
|- ( ( 1 + c ) = 0 -> c =/= 0 ) |
| 45 |
|
ax-rrecex |
|- ( ( c e. RR /\ c =/= 0 ) -> E. x e. RR ( c x. x ) = 1 ) |
| 46 |
44 45
|
sylan2 |
|- ( ( c e. RR /\ ( 1 + c ) = 0 ) -> E. x e. RR ( c x. x ) = 1 ) |
| 47 |
|
simpr |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> A e. CC ) |
| 48 |
|
simplrl |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> x e. RR ) |
| 49 |
48
|
recnd |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> x e. CC ) |
| 50 |
47 49
|
mulcld |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( A x. x ) e. CC ) |
| 51 |
|
simplll |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> c e. RR ) |
| 52 |
51
|
recnd |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> c e. CC ) |
| 53 |
12
|
a1i |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> 0 e. CC ) |
| 54 |
50 52 53
|
adddid |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( ( A x. x ) x. ( c + 0 ) ) = ( ( ( A x. x ) x. c ) + ( ( A x. x ) x. 0 ) ) ) |
| 55 |
11
|
a1i |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> 1 e. CC ) |
| 56 |
55 52 53
|
addassd |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( ( 1 + c ) + 0 ) = ( 1 + ( c + 0 ) ) ) |
| 57 |
|
simpllr |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( 1 + c ) = 0 ) |
| 58 |
57
|
oveq1d |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( ( 1 + c ) + 0 ) = ( 0 + 0 ) ) |
| 59 |
56 58
|
eqtr3d |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( 1 + ( c + 0 ) ) = ( 0 + 0 ) ) |
| 60 |
34 59 57
|
3eqtr4a |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( 1 + ( c + 0 ) ) = ( 1 + c ) ) |
| 61 |
37
|
a1i |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> 0 e. RR ) |
| 62 |
51 61
|
readdcld |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( c + 0 ) e. RR ) |
| 63 |
1
|
a1i |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> 1 e. RR ) |
| 64 |
|
readdcan |
|- ( ( ( c + 0 ) e. RR /\ c e. RR /\ 1 e. RR ) -> ( ( 1 + ( c + 0 ) ) = ( 1 + c ) <-> ( c + 0 ) = c ) ) |
| 65 |
62 51 63 64
|
syl3anc |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( ( 1 + ( c + 0 ) ) = ( 1 + c ) <-> ( c + 0 ) = c ) ) |
| 66 |
60 65
|
mpbid |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( c + 0 ) = c ) |
| 67 |
66
|
oveq2d |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( ( A x. x ) x. ( c + 0 ) ) = ( ( A x. x ) x. c ) ) |
| 68 |
54 67
|
eqtr3d |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( ( ( A x. x ) x. c ) + ( ( A x. x ) x. 0 ) ) = ( ( A x. x ) x. c ) ) |
| 69 |
|
mul31 |
|- ( ( A e. CC /\ x e. CC /\ c e. CC ) -> ( ( A x. x ) x. c ) = ( ( c x. x ) x. A ) ) |
| 70 |
47 49 52 69
|
syl3anc |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( ( A x. x ) x. c ) = ( ( c x. x ) x. A ) ) |
| 71 |
|
simplrr |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( c x. x ) = 1 ) |
| 72 |
71
|
oveq1d |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( ( c x. x ) x. A ) = ( 1 x. A ) ) |
| 73 |
47
|
mullidd |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( 1 x. A ) = A ) |
| 74 |
70 72 73
|
3eqtrd |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( ( A x. x ) x. c ) = A ) |
| 75 |
|
mul01 |
|- ( ( A x. x ) e. CC -> ( ( A x. x ) x. 0 ) = 0 ) |
| 76 |
50 75
|
syl |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( ( A x. x ) x. 0 ) = 0 ) |
| 77 |
74 76
|
oveq12d |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( ( ( A x. x ) x. c ) + ( ( A x. x ) x. 0 ) ) = ( A + 0 ) ) |
| 78 |
68 77 74
|
3eqtr3d |
|- ( ( ( ( c e. RR /\ ( 1 + c ) = 0 ) /\ ( x e. RR /\ ( c x. x ) = 1 ) ) /\ A e. CC ) -> ( A + 0 ) = A ) |
| 79 |
78
|
exp42 |
|- ( ( c e. RR /\ ( 1 + c ) = 0 ) -> ( x e. RR -> ( ( c x. x ) = 1 -> ( A e. CC -> ( A + 0 ) = A ) ) ) ) |
| 80 |
79
|
rexlimdv |
|- ( ( c e. RR /\ ( 1 + c ) = 0 ) -> ( E. x e. RR ( c x. x ) = 1 -> ( A e. CC -> ( A + 0 ) = A ) ) ) |
| 81 |
46 80
|
mpd |
|- ( ( c e. RR /\ ( 1 + c ) = 0 ) -> ( A e. CC -> ( A + 0 ) = A ) ) |
| 82 |
81
|
rexlimiva |
|- ( E. c e. RR ( 1 + c ) = 0 -> ( A e. CC -> ( A + 0 ) = A ) ) |
| 83 |
1 2 82
|
mp2b |
|- ( A e. CC -> ( A + 0 ) = A ) |