Metamath Proof Explorer


Theorem addrsub

Description: Right-subtraction: Subtraction of the right summand from the result of an addition. (Contributed by BJ, 6-Jun-2019)

Ref Expression
Hypotheses addlsub.a
|- ( ph -> A e. CC )
addlsub.b
|- ( ph -> B e. CC )
addlsub.c
|- ( ph -> C e. CC )
Assertion addrsub
|- ( ph -> ( ( A + B ) = C <-> B = ( C - A ) ) )

Proof

Step Hyp Ref Expression
1 addlsub.a
 |-  ( ph -> A e. CC )
2 addlsub.b
 |-  ( ph -> B e. CC )
3 addlsub.c
 |-  ( ph -> C e. CC )
4 1 2 addcomd
 |-  ( ph -> ( A + B ) = ( B + A ) )
5 4 eqeq1d
 |-  ( ph -> ( ( A + B ) = C <-> ( B + A ) = C ) )
6 2 1 3 addlsub
 |-  ( ph -> ( ( B + A ) = C <-> B = ( C - A ) ) )
7 5 6 bitrd
 |-  ( ph -> ( ( A + B ) = C <-> B = ( C - A ) ) )