Metamath Proof Explorer


Theorem adds12d

Description: Commutative/associative law that swaps the first two terms in a triple sum. (Contributed by Scott Fenton, 9-Mar-2025)

Ref Expression
Hypotheses addsassd.1
|- ( ph -> A e. No )
addsassd.2
|- ( ph -> B e. No )
addsassd.3
|- ( ph -> C e. No )
Assertion adds12d
|- ( ph -> ( A +s ( B +s C ) ) = ( B +s ( A +s C ) ) )

Proof

Step Hyp Ref Expression
1 addsassd.1
 |-  ( ph -> A e. No )
2 addsassd.2
 |-  ( ph -> B e. No )
3 addsassd.3
 |-  ( ph -> C e. No )
4 1 2 addscomd
 |-  ( ph -> ( A +s B ) = ( B +s A ) )
5 4 oveq1d
 |-  ( ph -> ( ( A +s B ) +s C ) = ( ( B +s A ) +s C ) )
6 1 2 3 addsassd
 |-  ( ph -> ( ( A +s B ) +s C ) = ( A +s ( B +s C ) ) )
7 2 1 3 addsassd
 |-  ( ph -> ( ( B +s A ) +s C ) = ( B +s ( A +s C ) ) )
8 5 6 7 3eqtr3d
 |-  ( ph -> ( A +s ( B +s C ) ) = ( B +s ( A +s C ) ) )