Description: Commutative/associative law that swaps the first two terms in a triple sum. (Contributed by Scott Fenton, 9-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | addsassd.1 | |- ( ph -> A e. No ) |
|
addsassd.2 | |- ( ph -> B e. No ) |
||
addsassd.3 | |- ( ph -> C e. No ) |
||
Assertion | adds12d | |- ( ph -> ( A +s ( B +s C ) ) = ( B +s ( A +s C ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addsassd.1 | |- ( ph -> A e. No ) |
|
2 | addsassd.2 | |- ( ph -> B e. No ) |
|
3 | addsassd.3 | |- ( ph -> C e. No ) |
|
4 | 1 2 | addscomd | |- ( ph -> ( A +s B ) = ( B +s A ) ) |
5 | 4 | oveq1d | |- ( ph -> ( ( A +s B ) +s C ) = ( ( B +s A ) +s C ) ) |
6 | 1 2 3 | addsassd | |- ( ph -> ( ( A +s B ) +s C ) = ( A +s ( B +s C ) ) ) |
7 | 2 1 3 | addsassd | |- ( ph -> ( ( B +s A ) +s C ) = ( B +s ( A +s C ) ) ) |
8 | 5 6 7 | 3eqtr3d | |- ( ph -> ( A +s ( B +s C ) ) = ( B +s ( A +s C ) ) ) |