Metamath Proof Explorer


Theorem addsdid

Description: Distributive law for surreal numbers. Commuted form of part of theorem 7 of Conway p. 19. (Contributed by Scott Fenton, 9-Mar-2025)

Ref Expression
Hypotheses addsdid.1
|- ( ph -> A e. No )
addsdid.2
|- ( ph -> B e. No )
addsdid.3
|- ( ph -> C e. No )
Assertion addsdid
|- ( ph -> ( A x.s ( B +s C ) ) = ( ( A x.s B ) +s ( A x.s C ) ) )

Proof

Step Hyp Ref Expression
1 addsdid.1
 |-  ( ph -> A e. No )
2 addsdid.2
 |-  ( ph -> B e. No )
3 addsdid.3
 |-  ( ph -> C e. No )
4 addsdi
 |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( A x.s ( B +s C ) ) = ( ( A x.s B ) +s ( A x.s C ) ) )
5 1 2 3 4 syl3anc
 |-  ( ph -> ( A x.s ( B +s C ) ) = ( ( A x.s B ) +s ( A x.s C ) ) )