Description: Distributive law for surreal numbers. Commuted form of part of theorem 7 of Conway p. 19. (Contributed by Scott Fenton, 9-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | addsdid.1 | |- ( ph -> A e. No ) |
|
| addsdid.2 | |- ( ph -> B e. No ) |
||
| addsdid.3 | |- ( ph -> C e. No ) |
||
| Assertion | addsdid | |- ( ph -> ( A x.s ( B +s C ) ) = ( ( A x.s B ) +s ( A x.s C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addsdid.1 | |- ( ph -> A e. No ) |
|
| 2 | addsdid.2 | |- ( ph -> B e. No ) |
|
| 3 | addsdid.3 | |- ( ph -> C e. No ) |
|
| 4 | addsdi | |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( A x.s ( B +s C ) ) = ( ( A x.s B ) +s ( A x.s C ) ) ) |
|
| 5 | 1 2 3 4 | syl3anc | |- ( ph -> ( A x.s ( B +s C ) ) = ( ( A x.s B ) +s ( A x.s C ) ) ) |