Step |
Hyp |
Ref |
Expression |
1 |
|
addsdilem.1 |
|- ( ph -> A e. No ) |
2 |
|
addsdilem.2 |
|- ( ph -> B e. No ) |
3 |
|
addsdilem.3 |
|- ( ph -> C e. No ) |
4 |
|
lltropt |
|- ( _Left ` A ) < |
5 |
4
|
a1i |
|- ( ph -> ( _Left ` A ) < |
6 |
2 3
|
addscut2 |
|- ( ph -> ( { t | E. yL e. ( _Left ` B ) t = ( yL +s C ) } u. { t | E. zL e. ( _Left ` C ) t = ( B +s zL ) } ) < |
7 |
|
lrcut |
|- ( A e. No -> ( ( _Left ` A ) |s ( _Right ` A ) ) = A ) |
8 |
1 7
|
syl |
|- ( ph -> ( ( _Left ` A ) |s ( _Right ` A ) ) = A ) |
9 |
8
|
eqcomd |
|- ( ph -> A = ( ( _Left ` A ) |s ( _Right ` A ) ) ) |
10 |
|
addsval2 |
|- ( ( B e. No /\ C e. No ) -> ( B +s C ) = ( ( { t | E. yL e. ( _Left ` B ) t = ( yL +s C ) } u. { t | E. zL e. ( _Left ` C ) t = ( B +s zL ) } ) |s ( { t | E. yR e. ( _Right ` B ) t = ( yR +s C ) } u. { t | E. zR e. ( _Right ` C ) t = ( B +s zR ) } ) ) ) |
11 |
2 3 10
|
syl2anc |
|- ( ph -> ( B +s C ) = ( ( { t | E. yL e. ( _Left ` B ) t = ( yL +s C ) } u. { t | E. zL e. ( _Left ` C ) t = ( B +s zL ) } ) |s ( { t | E. yR e. ( _Right ` B ) t = ( yR +s C ) } u. { t | E. zR e. ( _Right ` C ) t = ( B +s zR ) } ) ) ) |
12 |
5 6 9 11
|
mulsunif |
|- ( ph -> ( A x.s ( B +s C ) ) = ( ( { a | E. xL e. ( _Left ` A ) E. b e. ( { t | E. yL e. ( _Left ` B ) t = ( yL +s C ) } u. { t | E. zL e. ( _Left ` C ) t = ( B +s zL ) } ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) } u. { a | E. xR e. ( _Right ` A ) E. b e. ( { t | E. yR e. ( _Right ` B ) t = ( yR +s C ) } u. { t | E. zR e. ( _Right ` C ) t = ( B +s zR ) } ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) } ) |s ( { a | E. xL e. ( _Left ` A ) E. b e. ( { t | E. yR e. ( _Right ` B ) t = ( yR +s C ) } u. { t | E. zR e. ( _Right ` C ) t = ( B +s zR ) } ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) } u. { a | E. xR e. ( _Right ` A ) E. b e. ( { t | E. yL e. ( _Left ` B ) t = ( yL +s C ) } u. { t | E. zL e. ( _Left ` C ) t = ( B +s zL ) } ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) } ) ) ) |
13 |
|
unab |
|- ( { a | E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( yL +s C ) ) ) -s ( xL x.s ( yL +s C ) ) ) } u. { a | E. xL e. ( _Left ` A ) E. zL e. ( _Left ` C ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( B +s zL ) ) ) -s ( xL x.s ( B +s zL ) ) ) } ) = { a | ( E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( yL +s C ) ) ) -s ( xL x.s ( yL +s C ) ) ) \/ E. xL e. ( _Left ` A ) E. zL e. ( _Left ` C ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( B +s zL ) ) ) -s ( xL x.s ( B +s zL ) ) ) ) } |
14 |
|
r19.43 |
|- ( E. xL e. ( _Left ` A ) ( E. yL e. ( _Left ` B ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( yL +s C ) ) ) -s ( xL x.s ( yL +s C ) ) ) \/ E. zL e. ( _Left ` C ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( B +s zL ) ) ) -s ( xL x.s ( B +s zL ) ) ) ) <-> ( E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( yL +s C ) ) ) -s ( xL x.s ( yL +s C ) ) ) \/ E. xL e. ( _Left ` A ) E. zL e. ( _Left ` C ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( B +s zL ) ) ) -s ( xL x.s ( B +s zL ) ) ) ) ) |
15 |
|
rexun |
|- ( E. b e. ( { t | E. yL e. ( _Left ` B ) t = ( yL +s C ) } u. { t | E. zL e. ( _Left ` C ) t = ( B +s zL ) } ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) <-> ( E. b e. { t | E. yL e. ( _Left ` B ) t = ( yL +s C ) } a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) \/ E. b e. { t | E. zL e. ( _Left ` C ) t = ( B +s zL ) } a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) ) ) |
16 |
|
eqeq1 |
|- ( t = b -> ( t = ( yL +s C ) <-> b = ( yL +s C ) ) ) |
17 |
16
|
rexbidv |
|- ( t = b -> ( E. yL e. ( _Left ` B ) t = ( yL +s C ) <-> E. yL e. ( _Left ` B ) b = ( yL +s C ) ) ) |
18 |
17
|
rexab |
|- ( E. b e. { t | E. yL e. ( _Left ` B ) t = ( yL +s C ) } a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) <-> E. b ( E. yL e. ( _Left ` B ) b = ( yL +s C ) /\ a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) ) ) |
19 |
|
rexcom4 |
|- ( E. yL e. ( _Left ` B ) E. b ( b = ( yL +s C ) /\ a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) ) <-> E. b E. yL e. ( _Left ` B ) ( b = ( yL +s C ) /\ a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) ) ) |
20 |
|
ovex |
|- ( yL +s C ) e. _V |
21 |
|
oveq2 |
|- ( b = ( yL +s C ) -> ( A x.s b ) = ( A x.s ( yL +s C ) ) ) |
22 |
21
|
oveq2d |
|- ( b = ( yL +s C ) -> ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) = ( ( xL x.s ( B +s C ) ) +s ( A x.s ( yL +s C ) ) ) ) |
23 |
|
oveq2 |
|- ( b = ( yL +s C ) -> ( xL x.s b ) = ( xL x.s ( yL +s C ) ) ) |
24 |
22 23
|
oveq12d |
|- ( b = ( yL +s C ) -> ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( yL +s C ) ) ) -s ( xL x.s ( yL +s C ) ) ) ) |
25 |
24
|
eqeq2d |
|- ( b = ( yL +s C ) -> ( a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) <-> a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( yL +s C ) ) ) -s ( xL x.s ( yL +s C ) ) ) ) ) |
26 |
20 25
|
ceqsexv |
|- ( E. b ( b = ( yL +s C ) /\ a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) ) <-> a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( yL +s C ) ) ) -s ( xL x.s ( yL +s C ) ) ) ) |
27 |
26
|
rexbii |
|- ( E. yL e. ( _Left ` B ) E. b ( b = ( yL +s C ) /\ a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) ) <-> E. yL e. ( _Left ` B ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( yL +s C ) ) ) -s ( xL x.s ( yL +s C ) ) ) ) |
28 |
|
r19.41v |
|- ( E. yL e. ( _Left ` B ) ( b = ( yL +s C ) /\ a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) ) <-> ( E. yL e. ( _Left ` B ) b = ( yL +s C ) /\ a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) ) ) |
29 |
28
|
exbii |
|- ( E. b E. yL e. ( _Left ` B ) ( b = ( yL +s C ) /\ a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) ) <-> E. b ( E. yL e. ( _Left ` B ) b = ( yL +s C ) /\ a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) ) ) |
30 |
19 27 29
|
3bitr3ri |
|- ( E. b ( E. yL e. ( _Left ` B ) b = ( yL +s C ) /\ a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) ) <-> E. yL e. ( _Left ` B ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( yL +s C ) ) ) -s ( xL x.s ( yL +s C ) ) ) ) |
31 |
18 30
|
bitri |
|- ( E. b e. { t | E. yL e. ( _Left ` B ) t = ( yL +s C ) } a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) <-> E. yL e. ( _Left ` B ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( yL +s C ) ) ) -s ( xL x.s ( yL +s C ) ) ) ) |
32 |
|
eqeq1 |
|- ( t = b -> ( t = ( B +s zL ) <-> b = ( B +s zL ) ) ) |
33 |
32
|
rexbidv |
|- ( t = b -> ( E. zL e. ( _Left ` C ) t = ( B +s zL ) <-> E. zL e. ( _Left ` C ) b = ( B +s zL ) ) ) |
34 |
33
|
rexab |
|- ( E. b e. { t | E. zL e. ( _Left ` C ) t = ( B +s zL ) } a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) <-> E. b ( E. zL e. ( _Left ` C ) b = ( B +s zL ) /\ a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) ) ) |
35 |
|
rexcom4 |
|- ( E. zL e. ( _Left ` C ) E. b ( b = ( B +s zL ) /\ a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) ) <-> E. b E. zL e. ( _Left ` C ) ( b = ( B +s zL ) /\ a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) ) ) |
36 |
|
ovex |
|- ( B +s zL ) e. _V |
37 |
|
oveq2 |
|- ( b = ( B +s zL ) -> ( A x.s b ) = ( A x.s ( B +s zL ) ) ) |
38 |
37
|
oveq2d |
|- ( b = ( B +s zL ) -> ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) = ( ( xL x.s ( B +s C ) ) +s ( A x.s ( B +s zL ) ) ) ) |
39 |
|
oveq2 |
|- ( b = ( B +s zL ) -> ( xL x.s b ) = ( xL x.s ( B +s zL ) ) ) |
40 |
38 39
|
oveq12d |
|- ( b = ( B +s zL ) -> ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( B +s zL ) ) ) -s ( xL x.s ( B +s zL ) ) ) ) |
41 |
40
|
eqeq2d |
|- ( b = ( B +s zL ) -> ( a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) <-> a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( B +s zL ) ) ) -s ( xL x.s ( B +s zL ) ) ) ) ) |
42 |
36 41
|
ceqsexv |
|- ( E. b ( b = ( B +s zL ) /\ a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) ) <-> a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( B +s zL ) ) ) -s ( xL x.s ( B +s zL ) ) ) ) |
43 |
42
|
rexbii |
|- ( E. zL e. ( _Left ` C ) E. b ( b = ( B +s zL ) /\ a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) ) <-> E. zL e. ( _Left ` C ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( B +s zL ) ) ) -s ( xL x.s ( B +s zL ) ) ) ) |
44 |
|
r19.41v |
|- ( E. zL e. ( _Left ` C ) ( b = ( B +s zL ) /\ a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) ) <-> ( E. zL e. ( _Left ` C ) b = ( B +s zL ) /\ a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) ) ) |
45 |
44
|
exbii |
|- ( E. b E. zL e. ( _Left ` C ) ( b = ( B +s zL ) /\ a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) ) <-> E. b ( E. zL e. ( _Left ` C ) b = ( B +s zL ) /\ a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) ) ) |
46 |
35 43 45
|
3bitr3ri |
|- ( E. b ( E. zL e. ( _Left ` C ) b = ( B +s zL ) /\ a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) ) <-> E. zL e. ( _Left ` C ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( B +s zL ) ) ) -s ( xL x.s ( B +s zL ) ) ) ) |
47 |
34 46
|
bitri |
|- ( E. b e. { t | E. zL e. ( _Left ` C ) t = ( B +s zL ) } a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) <-> E. zL e. ( _Left ` C ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( B +s zL ) ) ) -s ( xL x.s ( B +s zL ) ) ) ) |
48 |
31 47
|
orbi12i |
|- ( ( E. b e. { t | E. yL e. ( _Left ` B ) t = ( yL +s C ) } a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) \/ E. b e. { t | E. zL e. ( _Left ` C ) t = ( B +s zL ) } a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) ) <-> ( E. yL e. ( _Left ` B ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( yL +s C ) ) ) -s ( xL x.s ( yL +s C ) ) ) \/ E. zL e. ( _Left ` C ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( B +s zL ) ) ) -s ( xL x.s ( B +s zL ) ) ) ) ) |
49 |
15 48
|
bitr2i |
|- ( ( E. yL e. ( _Left ` B ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( yL +s C ) ) ) -s ( xL x.s ( yL +s C ) ) ) \/ E. zL e. ( _Left ` C ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( B +s zL ) ) ) -s ( xL x.s ( B +s zL ) ) ) ) <-> E. b e. ( { t | E. yL e. ( _Left ` B ) t = ( yL +s C ) } u. { t | E. zL e. ( _Left ` C ) t = ( B +s zL ) } ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) ) |
50 |
49
|
rexbii |
|- ( E. xL e. ( _Left ` A ) ( E. yL e. ( _Left ` B ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( yL +s C ) ) ) -s ( xL x.s ( yL +s C ) ) ) \/ E. zL e. ( _Left ` C ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( B +s zL ) ) ) -s ( xL x.s ( B +s zL ) ) ) ) <-> E. xL e. ( _Left ` A ) E. b e. ( { t | E. yL e. ( _Left ` B ) t = ( yL +s C ) } u. { t | E. zL e. ( _Left ` C ) t = ( B +s zL ) } ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) ) |
51 |
14 50
|
bitr3i |
|- ( ( E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( yL +s C ) ) ) -s ( xL x.s ( yL +s C ) ) ) \/ E. xL e. ( _Left ` A ) E. zL e. ( _Left ` C ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( B +s zL ) ) ) -s ( xL x.s ( B +s zL ) ) ) ) <-> E. xL e. ( _Left ` A ) E. b e. ( { t | E. yL e. ( _Left ` B ) t = ( yL +s C ) } u. { t | E. zL e. ( _Left ` C ) t = ( B +s zL ) } ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) ) |
52 |
51
|
abbii |
|- { a | ( E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( yL +s C ) ) ) -s ( xL x.s ( yL +s C ) ) ) \/ E. xL e. ( _Left ` A ) E. zL e. ( _Left ` C ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( B +s zL ) ) ) -s ( xL x.s ( B +s zL ) ) ) ) } = { a | E. xL e. ( _Left ` A ) E. b e. ( { t | E. yL e. ( _Left ` B ) t = ( yL +s C ) } u. { t | E. zL e. ( _Left ` C ) t = ( B +s zL ) } ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) } |
53 |
13 52
|
eqtri |
|- ( { a | E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( yL +s C ) ) ) -s ( xL x.s ( yL +s C ) ) ) } u. { a | E. xL e. ( _Left ` A ) E. zL e. ( _Left ` C ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( B +s zL ) ) ) -s ( xL x.s ( B +s zL ) ) ) } ) = { a | E. xL e. ( _Left ` A ) E. b e. ( { t | E. yL e. ( _Left ` B ) t = ( yL +s C ) } u. { t | E. zL e. ( _Left ` C ) t = ( B +s zL ) } ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) } |
54 |
|
unab |
|- ( { a | E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( yR +s C ) ) ) -s ( xR x.s ( yR +s C ) ) ) } u. { a | E. xR e. ( _Right ` A ) E. zR e. ( _Right ` C ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( B +s zR ) ) ) -s ( xR x.s ( B +s zR ) ) ) } ) = { a | ( E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( yR +s C ) ) ) -s ( xR x.s ( yR +s C ) ) ) \/ E. xR e. ( _Right ` A ) E. zR e. ( _Right ` C ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( B +s zR ) ) ) -s ( xR x.s ( B +s zR ) ) ) ) } |
55 |
|
r19.43 |
|- ( E. xR e. ( _Right ` A ) ( E. yR e. ( _Right ` B ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( yR +s C ) ) ) -s ( xR x.s ( yR +s C ) ) ) \/ E. zR e. ( _Right ` C ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( B +s zR ) ) ) -s ( xR x.s ( B +s zR ) ) ) ) <-> ( E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( yR +s C ) ) ) -s ( xR x.s ( yR +s C ) ) ) \/ E. xR e. ( _Right ` A ) E. zR e. ( _Right ` C ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( B +s zR ) ) ) -s ( xR x.s ( B +s zR ) ) ) ) ) |
56 |
|
rexun |
|- ( E. b e. ( { t | E. yR e. ( _Right ` B ) t = ( yR +s C ) } u. { t | E. zR e. ( _Right ` C ) t = ( B +s zR ) } ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) <-> ( E. b e. { t | E. yR e. ( _Right ` B ) t = ( yR +s C ) } a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) \/ E. b e. { t | E. zR e. ( _Right ` C ) t = ( B +s zR ) } a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) ) ) |
57 |
|
eqeq1 |
|- ( t = b -> ( t = ( yR +s C ) <-> b = ( yR +s C ) ) ) |
58 |
57
|
rexbidv |
|- ( t = b -> ( E. yR e. ( _Right ` B ) t = ( yR +s C ) <-> E. yR e. ( _Right ` B ) b = ( yR +s C ) ) ) |
59 |
58
|
rexab |
|- ( E. b e. { t | E. yR e. ( _Right ` B ) t = ( yR +s C ) } a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) <-> E. b ( E. yR e. ( _Right ` B ) b = ( yR +s C ) /\ a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) ) ) |
60 |
|
rexcom4 |
|- ( E. yR e. ( _Right ` B ) E. b ( b = ( yR +s C ) /\ a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) ) <-> E. b E. yR e. ( _Right ` B ) ( b = ( yR +s C ) /\ a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) ) ) |
61 |
|
ovex |
|- ( yR +s C ) e. _V |
62 |
|
oveq2 |
|- ( b = ( yR +s C ) -> ( A x.s b ) = ( A x.s ( yR +s C ) ) ) |
63 |
62
|
oveq2d |
|- ( b = ( yR +s C ) -> ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) = ( ( xR x.s ( B +s C ) ) +s ( A x.s ( yR +s C ) ) ) ) |
64 |
|
oveq2 |
|- ( b = ( yR +s C ) -> ( xR x.s b ) = ( xR x.s ( yR +s C ) ) ) |
65 |
63 64
|
oveq12d |
|- ( b = ( yR +s C ) -> ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( yR +s C ) ) ) -s ( xR x.s ( yR +s C ) ) ) ) |
66 |
65
|
eqeq2d |
|- ( b = ( yR +s C ) -> ( a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) <-> a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( yR +s C ) ) ) -s ( xR x.s ( yR +s C ) ) ) ) ) |
67 |
61 66
|
ceqsexv |
|- ( E. b ( b = ( yR +s C ) /\ a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) ) <-> a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( yR +s C ) ) ) -s ( xR x.s ( yR +s C ) ) ) ) |
68 |
67
|
rexbii |
|- ( E. yR e. ( _Right ` B ) E. b ( b = ( yR +s C ) /\ a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) ) <-> E. yR e. ( _Right ` B ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( yR +s C ) ) ) -s ( xR x.s ( yR +s C ) ) ) ) |
69 |
|
r19.41v |
|- ( E. yR e. ( _Right ` B ) ( b = ( yR +s C ) /\ a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) ) <-> ( E. yR e. ( _Right ` B ) b = ( yR +s C ) /\ a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) ) ) |
70 |
69
|
exbii |
|- ( E. b E. yR e. ( _Right ` B ) ( b = ( yR +s C ) /\ a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) ) <-> E. b ( E. yR e. ( _Right ` B ) b = ( yR +s C ) /\ a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) ) ) |
71 |
60 68 70
|
3bitr3ri |
|- ( E. b ( E. yR e. ( _Right ` B ) b = ( yR +s C ) /\ a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) ) <-> E. yR e. ( _Right ` B ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( yR +s C ) ) ) -s ( xR x.s ( yR +s C ) ) ) ) |
72 |
59 71
|
bitri |
|- ( E. b e. { t | E. yR e. ( _Right ` B ) t = ( yR +s C ) } a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) <-> E. yR e. ( _Right ` B ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( yR +s C ) ) ) -s ( xR x.s ( yR +s C ) ) ) ) |
73 |
|
eqeq1 |
|- ( t = b -> ( t = ( B +s zR ) <-> b = ( B +s zR ) ) ) |
74 |
73
|
rexbidv |
|- ( t = b -> ( E. zR e. ( _Right ` C ) t = ( B +s zR ) <-> E. zR e. ( _Right ` C ) b = ( B +s zR ) ) ) |
75 |
74
|
rexab |
|- ( E. b e. { t | E. zR e. ( _Right ` C ) t = ( B +s zR ) } a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) <-> E. b ( E. zR e. ( _Right ` C ) b = ( B +s zR ) /\ a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) ) ) |
76 |
|
rexcom4 |
|- ( E. zR e. ( _Right ` C ) E. b ( b = ( B +s zR ) /\ a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) ) <-> E. b E. zR e. ( _Right ` C ) ( b = ( B +s zR ) /\ a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) ) ) |
77 |
|
ovex |
|- ( B +s zR ) e. _V |
78 |
|
oveq2 |
|- ( b = ( B +s zR ) -> ( A x.s b ) = ( A x.s ( B +s zR ) ) ) |
79 |
78
|
oveq2d |
|- ( b = ( B +s zR ) -> ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) = ( ( xR x.s ( B +s C ) ) +s ( A x.s ( B +s zR ) ) ) ) |
80 |
|
oveq2 |
|- ( b = ( B +s zR ) -> ( xR x.s b ) = ( xR x.s ( B +s zR ) ) ) |
81 |
79 80
|
oveq12d |
|- ( b = ( B +s zR ) -> ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( B +s zR ) ) ) -s ( xR x.s ( B +s zR ) ) ) ) |
82 |
81
|
eqeq2d |
|- ( b = ( B +s zR ) -> ( a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) <-> a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( B +s zR ) ) ) -s ( xR x.s ( B +s zR ) ) ) ) ) |
83 |
77 82
|
ceqsexv |
|- ( E. b ( b = ( B +s zR ) /\ a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) ) <-> a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( B +s zR ) ) ) -s ( xR x.s ( B +s zR ) ) ) ) |
84 |
83
|
rexbii |
|- ( E. zR e. ( _Right ` C ) E. b ( b = ( B +s zR ) /\ a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) ) <-> E. zR e. ( _Right ` C ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( B +s zR ) ) ) -s ( xR x.s ( B +s zR ) ) ) ) |
85 |
|
r19.41v |
|- ( E. zR e. ( _Right ` C ) ( b = ( B +s zR ) /\ a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) ) <-> ( E. zR e. ( _Right ` C ) b = ( B +s zR ) /\ a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) ) ) |
86 |
85
|
exbii |
|- ( E. b E. zR e. ( _Right ` C ) ( b = ( B +s zR ) /\ a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) ) <-> E. b ( E. zR e. ( _Right ` C ) b = ( B +s zR ) /\ a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) ) ) |
87 |
76 84 86
|
3bitr3ri |
|- ( E. b ( E. zR e. ( _Right ` C ) b = ( B +s zR ) /\ a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) ) <-> E. zR e. ( _Right ` C ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( B +s zR ) ) ) -s ( xR x.s ( B +s zR ) ) ) ) |
88 |
75 87
|
bitri |
|- ( E. b e. { t | E. zR e. ( _Right ` C ) t = ( B +s zR ) } a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) <-> E. zR e. ( _Right ` C ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( B +s zR ) ) ) -s ( xR x.s ( B +s zR ) ) ) ) |
89 |
72 88
|
orbi12i |
|- ( ( E. b e. { t | E. yR e. ( _Right ` B ) t = ( yR +s C ) } a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) \/ E. b e. { t | E. zR e. ( _Right ` C ) t = ( B +s zR ) } a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) ) <-> ( E. yR e. ( _Right ` B ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( yR +s C ) ) ) -s ( xR x.s ( yR +s C ) ) ) \/ E. zR e. ( _Right ` C ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( B +s zR ) ) ) -s ( xR x.s ( B +s zR ) ) ) ) ) |
90 |
56 89
|
bitr2i |
|- ( ( E. yR e. ( _Right ` B ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( yR +s C ) ) ) -s ( xR x.s ( yR +s C ) ) ) \/ E. zR e. ( _Right ` C ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( B +s zR ) ) ) -s ( xR x.s ( B +s zR ) ) ) ) <-> E. b e. ( { t | E. yR e. ( _Right ` B ) t = ( yR +s C ) } u. { t | E. zR e. ( _Right ` C ) t = ( B +s zR ) } ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) ) |
91 |
90
|
rexbii |
|- ( E. xR e. ( _Right ` A ) ( E. yR e. ( _Right ` B ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( yR +s C ) ) ) -s ( xR x.s ( yR +s C ) ) ) \/ E. zR e. ( _Right ` C ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( B +s zR ) ) ) -s ( xR x.s ( B +s zR ) ) ) ) <-> E. xR e. ( _Right ` A ) E. b e. ( { t | E. yR e. ( _Right ` B ) t = ( yR +s C ) } u. { t | E. zR e. ( _Right ` C ) t = ( B +s zR ) } ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) ) |
92 |
55 91
|
bitr3i |
|- ( ( E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( yR +s C ) ) ) -s ( xR x.s ( yR +s C ) ) ) \/ E. xR e. ( _Right ` A ) E. zR e. ( _Right ` C ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( B +s zR ) ) ) -s ( xR x.s ( B +s zR ) ) ) ) <-> E. xR e. ( _Right ` A ) E. b e. ( { t | E. yR e. ( _Right ` B ) t = ( yR +s C ) } u. { t | E. zR e. ( _Right ` C ) t = ( B +s zR ) } ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) ) |
93 |
92
|
abbii |
|- { a | ( E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( yR +s C ) ) ) -s ( xR x.s ( yR +s C ) ) ) \/ E. xR e. ( _Right ` A ) E. zR e. ( _Right ` C ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( B +s zR ) ) ) -s ( xR x.s ( B +s zR ) ) ) ) } = { a | E. xR e. ( _Right ` A ) E. b e. ( { t | E. yR e. ( _Right ` B ) t = ( yR +s C ) } u. { t | E. zR e. ( _Right ` C ) t = ( B +s zR ) } ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) } |
94 |
54 93
|
eqtri |
|- ( { a | E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( yR +s C ) ) ) -s ( xR x.s ( yR +s C ) ) ) } u. { a | E. xR e. ( _Right ` A ) E. zR e. ( _Right ` C ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( B +s zR ) ) ) -s ( xR x.s ( B +s zR ) ) ) } ) = { a | E. xR e. ( _Right ` A ) E. b e. ( { t | E. yR e. ( _Right ` B ) t = ( yR +s C ) } u. { t | E. zR e. ( _Right ` C ) t = ( B +s zR ) } ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) } |
95 |
53 94
|
uneq12i |
|- ( ( { a | E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( yL +s C ) ) ) -s ( xL x.s ( yL +s C ) ) ) } u. { a | E. xL e. ( _Left ` A ) E. zL e. ( _Left ` C ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( B +s zL ) ) ) -s ( xL x.s ( B +s zL ) ) ) } ) u. ( { a | E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( yR +s C ) ) ) -s ( xR x.s ( yR +s C ) ) ) } u. { a | E. xR e. ( _Right ` A ) E. zR e. ( _Right ` C ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( B +s zR ) ) ) -s ( xR x.s ( B +s zR ) ) ) } ) ) = ( { a | E. xL e. ( _Left ` A ) E. b e. ( { t | E. yL e. ( _Left ` B ) t = ( yL +s C ) } u. { t | E. zL e. ( _Left ` C ) t = ( B +s zL ) } ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) } u. { a | E. xR e. ( _Right ` A ) E. b e. ( { t | E. yR e. ( _Right ` B ) t = ( yR +s C ) } u. { t | E. zR e. ( _Right ` C ) t = ( B +s zR ) } ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) } ) |
96 |
|
unab |
|- ( { a | E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( yR +s C ) ) ) -s ( xL x.s ( yR +s C ) ) ) } u. { a | E. xL e. ( _Left ` A ) E. zR e. ( _Right ` C ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( B +s zR ) ) ) -s ( xL x.s ( B +s zR ) ) ) } ) = { a | ( E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( yR +s C ) ) ) -s ( xL x.s ( yR +s C ) ) ) \/ E. xL e. ( _Left ` A ) E. zR e. ( _Right ` C ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( B +s zR ) ) ) -s ( xL x.s ( B +s zR ) ) ) ) } |
97 |
|
r19.43 |
|- ( E. xL e. ( _Left ` A ) ( E. yR e. ( _Right ` B ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( yR +s C ) ) ) -s ( xL x.s ( yR +s C ) ) ) \/ E. zR e. ( _Right ` C ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( B +s zR ) ) ) -s ( xL x.s ( B +s zR ) ) ) ) <-> ( E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( yR +s C ) ) ) -s ( xL x.s ( yR +s C ) ) ) \/ E. xL e. ( _Left ` A ) E. zR e. ( _Right ` C ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( B +s zR ) ) ) -s ( xL x.s ( B +s zR ) ) ) ) ) |
98 |
|
rexun |
|- ( E. b e. ( { t | E. yR e. ( _Right ` B ) t = ( yR +s C ) } u. { t | E. zR e. ( _Right ` C ) t = ( B +s zR ) } ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) <-> ( E. b e. { t | E. yR e. ( _Right ` B ) t = ( yR +s C ) } a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) \/ E. b e. { t | E. zR e. ( _Right ` C ) t = ( B +s zR ) } a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) ) ) |
99 |
58
|
rexab |
|- ( E. b e. { t | E. yR e. ( _Right ` B ) t = ( yR +s C ) } a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) <-> E. b ( E. yR e. ( _Right ` B ) b = ( yR +s C ) /\ a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) ) ) |
100 |
|
rexcom4 |
|- ( E. yR e. ( _Right ` B ) E. b ( b = ( yR +s C ) /\ a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) ) <-> E. b E. yR e. ( _Right ` B ) ( b = ( yR +s C ) /\ a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) ) ) |
101 |
62
|
oveq2d |
|- ( b = ( yR +s C ) -> ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) = ( ( xL x.s ( B +s C ) ) +s ( A x.s ( yR +s C ) ) ) ) |
102 |
|
oveq2 |
|- ( b = ( yR +s C ) -> ( xL x.s b ) = ( xL x.s ( yR +s C ) ) ) |
103 |
101 102
|
oveq12d |
|- ( b = ( yR +s C ) -> ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( yR +s C ) ) ) -s ( xL x.s ( yR +s C ) ) ) ) |
104 |
103
|
eqeq2d |
|- ( b = ( yR +s C ) -> ( a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) <-> a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( yR +s C ) ) ) -s ( xL x.s ( yR +s C ) ) ) ) ) |
105 |
61 104
|
ceqsexv |
|- ( E. b ( b = ( yR +s C ) /\ a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) ) <-> a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( yR +s C ) ) ) -s ( xL x.s ( yR +s C ) ) ) ) |
106 |
105
|
rexbii |
|- ( E. yR e. ( _Right ` B ) E. b ( b = ( yR +s C ) /\ a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) ) <-> E. yR e. ( _Right ` B ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( yR +s C ) ) ) -s ( xL x.s ( yR +s C ) ) ) ) |
107 |
|
r19.41v |
|- ( E. yR e. ( _Right ` B ) ( b = ( yR +s C ) /\ a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) ) <-> ( E. yR e. ( _Right ` B ) b = ( yR +s C ) /\ a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) ) ) |
108 |
107
|
exbii |
|- ( E. b E. yR e. ( _Right ` B ) ( b = ( yR +s C ) /\ a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) ) <-> E. b ( E. yR e. ( _Right ` B ) b = ( yR +s C ) /\ a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) ) ) |
109 |
100 106 108
|
3bitr3ri |
|- ( E. b ( E. yR e. ( _Right ` B ) b = ( yR +s C ) /\ a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) ) <-> E. yR e. ( _Right ` B ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( yR +s C ) ) ) -s ( xL x.s ( yR +s C ) ) ) ) |
110 |
99 109
|
bitri |
|- ( E. b e. { t | E. yR e. ( _Right ` B ) t = ( yR +s C ) } a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) <-> E. yR e. ( _Right ` B ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( yR +s C ) ) ) -s ( xL x.s ( yR +s C ) ) ) ) |
111 |
74
|
rexab |
|- ( E. b e. { t | E. zR e. ( _Right ` C ) t = ( B +s zR ) } a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) <-> E. b ( E. zR e. ( _Right ` C ) b = ( B +s zR ) /\ a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) ) ) |
112 |
|
rexcom4 |
|- ( E. zR e. ( _Right ` C ) E. b ( b = ( B +s zR ) /\ a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) ) <-> E. b E. zR e. ( _Right ` C ) ( b = ( B +s zR ) /\ a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) ) ) |
113 |
78
|
oveq2d |
|- ( b = ( B +s zR ) -> ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) = ( ( xL x.s ( B +s C ) ) +s ( A x.s ( B +s zR ) ) ) ) |
114 |
|
oveq2 |
|- ( b = ( B +s zR ) -> ( xL x.s b ) = ( xL x.s ( B +s zR ) ) ) |
115 |
113 114
|
oveq12d |
|- ( b = ( B +s zR ) -> ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( B +s zR ) ) ) -s ( xL x.s ( B +s zR ) ) ) ) |
116 |
115
|
eqeq2d |
|- ( b = ( B +s zR ) -> ( a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) <-> a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( B +s zR ) ) ) -s ( xL x.s ( B +s zR ) ) ) ) ) |
117 |
77 116
|
ceqsexv |
|- ( E. b ( b = ( B +s zR ) /\ a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) ) <-> a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( B +s zR ) ) ) -s ( xL x.s ( B +s zR ) ) ) ) |
118 |
117
|
rexbii |
|- ( E. zR e. ( _Right ` C ) E. b ( b = ( B +s zR ) /\ a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) ) <-> E. zR e. ( _Right ` C ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( B +s zR ) ) ) -s ( xL x.s ( B +s zR ) ) ) ) |
119 |
|
r19.41v |
|- ( E. zR e. ( _Right ` C ) ( b = ( B +s zR ) /\ a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) ) <-> ( E. zR e. ( _Right ` C ) b = ( B +s zR ) /\ a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) ) ) |
120 |
119
|
exbii |
|- ( E. b E. zR e. ( _Right ` C ) ( b = ( B +s zR ) /\ a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) ) <-> E. b ( E. zR e. ( _Right ` C ) b = ( B +s zR ) /\ a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) ) ) |
121 |
112 118 120
|
3bitr3ri |
|- ( E. b ( E. zR e. ( _Right ` C ) b = ( B +s zR ) /\ a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) ) <-> E. zR e. ( _Right ` C ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( B +s zR ) ) ) -s ( xL x.s ( B +s zR ) ) ) ) |
122 |
111 121
|
bitri |
|- ( E. b e. { t | E. zR e. ( _Right ` C ) t = ( B +s zR ) } a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) <-> E. zR e. ( _Right ` C ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( B +s zR ) ) ) -s ( xL x.s ( B +s zR ) ) ) ) |
123 |
110 122
|
orbi12i |
|- ( ( E. b e. { t | E. yR e. ( _Right ` B ) t = ( yR +s C ) } a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) \/ E. b e. { t | E. zR e. ( _Right ` C ) t = ( B +s zR ) } a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) ) <-> ( E. yR e. ( _Right ` B ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( yR +s C ) ) ) -s ( xL x.s ( yR +s C ) ) ) \/ E. zR e. ( _Right ` C ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( B +s zR ) ) ) -s ( xL x.s ( B +s zR ) ) ) ) ) |
124 |
98 123
|
bitr2i |
|- ( ( E. yR e. ( _Right ` B ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( yR +s C ) ) ) -s ( xL x.s ( yR +s C ) ) ) \/ E. zR e. ( _Right ` C ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( B +s zR ) ) ) -s ( xL x.s ( B +s zR ) ) ) ) <-> E. b e. ( { t | E. yR e. ( _Right ` B ) t = ( yR +s C ) } u. { t | E. zR e. ( _Right ` C ) t = ( B +s zR ) } ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) ) |
125 |
124
|
rexbii |
|- ( E. xL e. ( _Left ` A ) ( E. yR e. ( _Right ` B ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( yR +s C ) ) ) -s ( xL x.s ( yR +s C ) ) ) \/ E. zR e. ( _Right ` C ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( B +s zR ) ) ) -s ( xL x.s ( B +s zR ) ) ) ) <-> E. xL e. ( _Left ` A ) E. b e. ( { t | E. yR e. ( _Right ` B ) t = ( yR +s C ) } u. { t | E. zR e. ( _Right ` C ) t = ( B +s zR ) } ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) ) |
126 |
97 125
|
bitr3i |
|- ( ( E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( yR +s C ) ) ) -s ( xL x.s ( yR +s C ) ) ) \/ E. xL e. ( _Left ` A ) E. zR e. ( _Right ` C ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( B +s zR ) ) ) -s ( xL x.s ( B +s zR ) ) ) ) <-> E. xL e. ( _Left ` A ) E. b e. ( { t | E. yR e. ( _Right ` B ) t = ( yR +s C ) } u. { t | E. zR e. ( _Right ` C ) t = ( B +s zR ) } ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) ) |
127 |
126
|
abbii |
|- { a | ( E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( yR +s C ) ) ) -s ( xL x.s ( yR +s C ) ) ) \/ E. xL e. ( _Left ` A ) E. zR e. ( _Right ` C ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( B +s zR ) ) ) -s ( xL x.s ( B +s zR ) ) ) ) } = { a | E. xL e. ( _Left ` A ) E. b e. ( { t | E. yR e. ( _Right ` B ) t = ( yR +s C ) } u. { t | E. zR e. ( _Right ` C ) t = ( B +s zR ) } ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) } |
128 |
96 127
|
eqtri |
|- ( { a | E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( yR +s C ) ) ) -s ( xL x.s ( yR +s C ) ) ) } u. { a | E. xL e. ( _Left ` A ) E. zR e. ( _Right ` C ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( B +s zR ) ) ) -s ( xL x.s ( B +s zR ) ) ) } ) = { a | E. xL e. ( _Left ` A ) E. b e. ( { t | E. yR e. ( _Right ` B ) t = ( yR +s C ) } u. { t | E. zR e. ( _Right ` C ) t = ( B +s zR ) } ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) } |
129 |
|
unab |
|- ( { a | E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( yL +s C ) ) ) -s ( xR x.s ( yL +s C ) ) ) } u. { a | E. xR e. ( _Right ` A ) E. zL e. ( _Left ` C ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( B +s zL ) ) ) -s ( xR x.s ( B +s zL ) ) ) } ) = { a | ( E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( yL +s C ) ) ) -s ( xR x.s ( yL +s C ) ) ) \/ E. xR e. ( _Right ` A ) E. zL e. ( _Left ` C ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( B +s zL ) ) ) -s ( xR x.s ( B +s zL ) ) ) ) } |
130 |
|
r19.43 |
|- ( E. xR e. ( _Right ` A ) ( E. yL e. ( _Left ` B ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( yL +s C ) ) ) -s ( xR x.s ( yL +s C ) ) ) \/ E. zL e. ( _Left ` C ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( B +s zL ) ) ) -s ( xR x.s ( B +s zL ) ) ) ) <-> ( E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( yL +s C ) ) ) -s ( xR x.s ( yL +s C ) ) ) \/ E. xR e. ( _Right ` A ) E. zL e. ( _Left ` C ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( B +s zL ) ) ) -s ( xR x.s ( B +s zL ) ) ) ) ) |
131 |
|
rexun |
|- ( E. b e. ( { t | E. yL e. ( _Left ` B ) t = ( yL +s C ) } u. { t | E. zL e. ( _Left ` C ) t = ( B +s zL ) } ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) <-> ( E. b e. { t | E. yL e. ( _Left ` B ) t = ( yL +s C ) } a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) \/ E. b e. { t | E. zL e. ( _Left ` C ) t = ( B +s zL ) } a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) ) ) |
132 |
17
|
rexab |
|- ( E. b e. { t | E. yL e. ( _Left ` B ) t = ( yL +s C ) } a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) <-> E. b ( E. yL e. ( _Left ` B ) b = ( yL +s C ) /\ a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) ) ) |
133 |
|
rexcom4 |
|- ( E. yL e. ( _Left ` B ) E. b ( b = ( yL +s C ) /\ a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) ) <-> E. b E. yL e. ( _Left ` B ) ( b = ( yL +s C ) /\ a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) ) ) |
134 |
21
|
oveq2d |
|- ( b = ( yL +s C ) -> ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) = ( ( xR x.s ( B +s C ) ) +s ( A x.s ( yL +s C ) ) ) ) |
135 |
|
oveq2 |
|- ( b = ( yL +s C ) -> ( xR x.s b ) = ( xR x.s ( yL +s C ) ) ) |
136 |
134 135
|
oveq12d |
|- ( b = ( yL +s C ) -> ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( yL +s C ) ) ) -s ( xR x.s ( yL +s C ) ) ) ) |
137 |
136
|
eqeq2d |
|- ( b = ( yL +s C ) -> ( a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) <-> a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( yL +s C ) ) ) -s ( xR x.s ( yL +s C ) ) ) ) ) |
138 |
20 137
|
ceqsexv |
|- ( E. b ( b = ( yL +s C ) /\ a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) ) <-> a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( yL +s C ) ) ) -s ( xR x.s ( yL +s C ) ) ) ) |
139 |
138
|
rexbii |
|- ( E. yL e. ( _Left ` B ) E. b ( b = ( yL +s C ) /\ a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) ) <-> E. yL e. ( _Left ` B ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( yL +s C ) ) ) -s ( xR x.s ( yL +s C ) ) ) ) |
140 |
|
r19.41v |
|- ( E. yL e. ( _Left ` B ) ( b = ( yL +s C ) /\ a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) ) <-> ( E. yL e. ( _Left ` B ) b = ( yL +s C ) /\ a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) ) ) |
141 |
140
|
exbii |
|- ( E. b E. yL e. ( _Left ` B ) ( b = ( yL +s C ) /\ a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) ) <-> E. b ( E. yL e. ( _Left ` B ) b = ( yL +s C ) /\ a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) ) ) |
142 |
133 139 141
|
3bitr3ri |
|- ( E. b ( E. yL e. ( _Left ` B ) b = ( yL +s C ) /\ a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) ) <-> E. yL e. ( _Left ` B ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( yL +s C ) ) ) -s ( xR x.s ( yL +s C ) ) ) ) |
143 |
132 142
|
bitri |
|- ( E. b e. { t | E. yL e. ( _Left ` B ) t = ( yL +s C ) } a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) <-> E. yL e. ( _Left ` B ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( yL +s C ) ) ) -s ( xR x.s ( yL +s C ) ) ) ) |
144 |
33
|
rexab |
|- ( E. b e. { t | E. zL e. ( _Left ` C ) t = ( B +s zL ) } a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) <-> E. b ( E. zL e. ( _Left ` C ) b = ( B +s zL ) /\ a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) ) ) |
145 |
|
rexcom4 |
|- ( E. zL e. ( _Left ` C ) E. b ( b = ( B +s zL ) /\ a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) ) <-> E. b E. zL e. ( _Left ` C ) ( b = ( B +s zL ) /\ a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) ) ) |
146 |
37
|
oveq2d |
|- ( b = ( B +s zL ) -> ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) = ( ( xR x.s ( B +s C ) ) +s ( A x.s ( B +s zL ) ) ) ) |
147 |
|
oveq2 |
|- ( b = ( B +s zL ) -> ( xR x.s b ) = ( xR x.s ( B +s zL ) ) ) |
148 |
146 147
|
oveq12d |
|- ( b = ( B +s zL ) -> ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( B +s zL ) ) ) -s ( xR x.s ( B +s zL ) ) ) ) |
149 |
148
|
eqeq2d |
|- ( b = ( B +s zL ) -> ( a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) <-> a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( B +s zL ) ) ) -s ( xR x.s ( B +s zL ) ) ) ) ) |
150 |
36 149
|
ceqsexv |
|- ( E. b ( b = ( B +s zL ) /\ a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) ) <-> a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( B +s zL ) ) ) -s ( xR x.s ( B +s zL ) ) ) ) |
151 |
150
|
rexbii |
|- ( E. zL e. ( _Left ` C ) E. b ( b = ( B +s zL ) /\ a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) ) <-> E. zL e. ( _Left ` C ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( B +s zL ) ) ) -s ( xR x.s ( B +s zL ) ) ) ) |
152 |
|
r19.41v |
|- ( E. zL e. ( _Left ` C ) ( b = ( B +s zL ) /\ a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) ) <-> ( E. zL e. ( _Left ` C ) b = ( B +s zL ) /\ a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) ) ) |
153 |
152
|
exbii |
|- ( E. b E. zL e. ( _Left ` C ) ( b = ( B +s zL ) /\ a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) ) <-> E. b ( E. zL e. ( _Left ` C ) b = ( B +s zL ) /\ a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) ) ) |
154 |
145 151 153
|
3bitr3ri |
|- ( E. b ( E. zL e. ( _Left ` C ) b = ( B +s zL ) /\ a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) ) <-> E. zL e. ( _Left ` C ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( B +s zL ) ) ) -s ( xR x.s ( B +s zL ) ) ) ) |
155 |
144 154
|
bitri |
|- ( E. b e. { t | E. zL e. ( _Left ` C ) t = ( B +s zL ) } a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) <-> E. zL e. ( _Left ` C ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( B +s zL ) ) ) -s ( xR x.s ( B +s zL ) ) ) ) |
156 |
143 155
|
orbi12i |
|- ( ( E. b e. { t | E. yL e. ( _Left ` B ) t = ( yL +s C ) } a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) \/ E. b e. { t | E. zL e. ( _Left ` C ) t = ( B +s zL ) } a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) ) <-> ( E. yL e. ( _Left ` B ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( yL +s C ) ) ) -s ( xR x.s ( yL +s C ) ) ) \/ E. zL e. ( _Left ` C ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( B +s zL ) ) ) -s ( xR x.s ( B +s zL ) ) ) ) ) |
157 |
131 156
|
bitr2i |
|- ( ( E. yL e. ( _Left ` B ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( yL +s C ) ) ) -s ( xR x.s ( yL +s C ) ) ) \/ E. zL e. ( _Left ` C ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( B +s zL ) ) ) -s ( xR x.s ( B +s zL ) ) ) ) <-> E. b e. ( { t | E. yL e. ( _Left ` B ) t = ( yL +s C ) } u. { t | E. zL e. ( _Left ` C ) t = ( B +s zL ) } ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) ) |
158 |
157
|
rexbii |
|- ( E. xR e. ( _Right ` A ) ( E. yL e. ( _Left ` B ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( yL +s C ) ) ) -s ( xR x.s ( yL +s C ) ) ) \/ E. zL e. ( _Left ` C ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( B +s zL ) ) ) -s ( xR x.s ( B +s zL ) ) ) ) <-> E. xR e. ( _Right ` A ) E. b e. ( { t | E. yL e. ( _Left ` B ) t = ( yL +s C ) } u. { t | E. zL e. ( _Left ` C ) t = ( B +s zL ) } ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) ) |
159 |
130 158
|
bitr3i |
|- ( ( E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( yL +s C ) ) ) -s ( xR x.s ( yL +s C ) ) ) \/ E. xR e. ( _Right ` A ) E. zL e. ( _Left ` C ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( B +s zL ) ) ) -s ( xR x.s ( B +s zL ) ) ) ) <-> E. xR e. ( _Right ` A ) E. b e. ( { t | E. yL e. ( _Left ` B ) t = ( yL +s C ) } u. { t | E. zL e. ( _Left ` C ) t = ( B +s zL ) } ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) ) |
160 |
159
|
abbii |
|- { a | ( E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( yL +s C ) ) ) -s ( xR x.s ( yL +s C ) ) ) \/ E. xR e. ( _Right ` A ) E. zL e. ( _Left ` C ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( B +s zL ) ) ) -s ( xR x.s ( B +s zL ) ) ) ) } = { a | E. xR e. ( _Right ` A ) E. b e. ( { t | E. yL e. ( _Left ` B ) t = ( yL +s C ) } u. { t | E. zL e. ( _Left ` C ) t = ( B +s zL ) } ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) } |
161 |
129 160
|
eqtri |
|- ( { a | E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( yL +s C ) ) ) -s ( xR x.s ( yL +s C ) ) ) } u. { a | E. xR e. ( _Right ` A ) E. zL e. ( _Left ` C ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( B +s zL ) ) ) -s ( xR x.s ( B +s zL ) ) ) } ) = { a | E. xR e. ( _Right ` A ) E. b e. ( { t | E. yL e. ( _Left ` B ) t = ( yL +s C ) } u. { t | E. zL e. ( _Left ` C ) t = ( B +s zL ) } ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) } |
162 |
128 161
|
uneq12i |
|- ( ( { a | E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( yR +s C ) ) ) -s ( xL x.s ( yR +s C ) ) ) } u. { a | E. xL e. ( _Left ` A ) E. zR e. ( _Right ` C ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( B +s zR ) ) ) -s ( xL x.s ( B +s zR ) ) ) } ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( yL +s C ) ) ) -s ( xR x.s ( yL +s C ) ) ) } u. { a | E. xR e. ( _Right ` A ) E. zL e. ( _Left ` C ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( B +s zL ) ) ) -s ( xR x.s ( B +s zL ) ) ) } ) ) = ( { a | E. xL e. ( _Left ` A ) E. b e. ( { t | E. yR e. ( _Right ` B ) t = ( yR +s C ) } u. { t | E. zR e. ( _Right ` C ) t = ( B +s zR ) } ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) } u. { a | E. xR e. ( _Right ` A ) E. b e. ( { t | E. yL e. ( _Left ` B ) t = ( yL +s C ) } u. { t | E. zL e. ( _Left ` C ) t = ( B +s zL ) } ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) } ) |
163 |
95 162
|
oveq12i |
|- ( ( ( { a | E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( yL +s C ) ) ) -s ( xL x.s ( yL +s C ) ) ) } u. { a | E. xL e. ( _Left ` A ) E. zL e. ( _Left ` C ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( B +s zL ) ) ) -s ( xL x.s ( B +s zL ) ) ) } ) u. ( { a | E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( yR +s C ) ) ) -s ( xR x.s ( yR +s C ) ) ) } u. { a | E. xR e. ( _Right ` A ) E. zR e. ( _Right ` C ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( B +s zR ) ) ) -s ( xR x.s ( B +s zR ) ) ) } ) ) |s ( ( { a | E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( yR +s C ) ) ) -s ( xL x.s ( yR +s C ) ) ) } u. { a | E. xL e. ( _Left ` A ) E. zR e. ( _Right ` C ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( B +s zR ) ) ) -s ( xL x.s ( B +s zR ) ) ) } ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( yL +s C ) ) ) -s ( xR x.s ( yL +s C ) ) ) } u. { a | E. xR e. ( _Right ` A ) E. zL e. ( _Left ` C ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( B +s zL ) ) ) -s ( xR x.s ( B +s zL ) ) ) } ) ) ) = ( ( { a | E. xL e. ( _Left ` A ) E. b e. ( { t | E. yL e. ( _Left ` B ) t = ( yL +s C ) } u. { t | E. zL e. ( _Left ` C ) t = ( B +s zL ) } ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) } u. { a | E. xR e. ( _Right ` A ) E. b e. ( { t | E. yR e. ( _Right ` B ) t = ( yR +s C ) } u. { t | E. zR e. ( _Right ` C ) t = ( B +s zR ) } ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) } ) |s ( { a | E. xL e. ( _Left ` A ) E. b e. ( { t | E. yR e. ( _Right ` B ) t = ( yR +s C ) } u. { t | E. zR e. ( _Right ` C ) t = ( B +s zR ) } ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xL x.s b ) ) } u. { a | E. xR e. ( _Right ` A ) E. b e. ( { t | E. yL e. ( _Left ` B ) t = ( yL +s C ) } u. { t | E. zL e. ( _Left ` C ) t = ( B +s zL ) } ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s b ) ) -s ( xR x.s b ) ) } ) ) |
164 |
12 163
|
eqtr4di |
|- ( ph -> ( A x.s ( B +s C ) ) = ( ( ( { a | E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( yL +s C ) ) ) -s ( xL x.s ( yL +s C ) ) ) } u. { a | E. xL e. ( _Left ` A ) E. zL e. ( _Left ` C ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( B +s zL ) ) ) -s ( xL x.s ( B +s zL ) ) ) } ) u. ( { a | E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( yR +s C ) ) ) -s ( xR x.s ( yR +s C ) ) ) } u. { a | E. xR e. ( _Right ` A ) E. zR e. ( _Right ` C ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( B +s zR ) ) ) -s ( xR x.s ( B +s zR ) ) ) } ) ) |s ( ( { a | E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( yR +s C ) ) ) -s ( xL x.s ( yR +s C ) ) ) } u. { a | E. xL e. ( _Left ` A ) E. zR e. ( _Right ` C ) a = ( ( ( xL x.s ( B +s C ) ) +s ( A x.s ( B +s zR ) ) ) -s ( xL x.s ( B +s zR ) ) ) } ) u. ( { a | E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( yL +s C ) ) ) -s ( xR x.s ( yL +s C ) ) ) } u. { a | E. xR e. ( _Right ` A ) E. zL e. ( _Left ` C ) a = ( ( ( xR x.s ( B +s C ) ) +s ( A x.s ( B +s zL ) ) ) -s ( xR x.s ( B +s zL ) ) ) } ) ) ) ) |