Step |
Hyp |
Ref |
Expression |
1 |
|
addsdilem.1 |
|- ( ph -> A e. No ) |
2 |
|
addsdilem.2 |
|- ( ph -> B e. No ) |
3 |
|
addsdilem.3 |
|- ( ph -> C e. No ) |
4 |
1 2
|
mulscut2 |
|- ( ph -> ( { b | E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) b = ( ( ( xL x.s B ) +s ( A x.s yL ) ) -s ( xL x.s yL ) ) } u. { b | E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) b = ( ( ( xR x.s B ) +s ( A x.s yR ) ) -s ( xR x.s yR ) ) } ) < |
5 |
1 3
|
mulscut2 |
|- ( ph -> ( { b | E. xL e. ( _Left ` A ) E. zL e. ( _Left ` C ) b = ( ( ( xL x.s C ) +s ( A x.s zL ) ) -s ( xL x.s zL ) ) } u. { b | E. xR e. ( _Right ` A ) E. zR e. ( _Right ` C ) b = ( ( ( xR x.s C ) +s ( A x.s zR ) ) -s ( xR x.s zR ) ) } ) < |
6 |
|
mulsval2 |
|- ( ( A e. No /\ B e. No ) -> ( A x.s B ) = ( ( { b | E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) b = ( ( ( xL x.s B ) +s ( A x.s yL ) ) -s ( xL x.s yL ) ) } u. { b | E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) b = ( ( ( xR x.s B ) +s ( A x.s yR ) ) -s ( xR x.s yR ) ) } ) |s ( { b | E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) b = ( ( ( xL x.s B ) +s ( A x.s yR ) ) -s ( xL x.s yR ) ) } u. { b | E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) b = ( ( ( xR x.s B ) +s ( A x.s yL ) ) -s ( xR x.s yL ) ) } ) ) ) |
7 |
1 2 6
|
syl2anc |
|- ( ph -> ( A x.s B ) = ( ( { b | E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) b = ( ( ( xL x.s B ) +s ( A x.s yL ) ) -s ( xL x.s yL ) ) } u. { b | E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) b = ( ( ( xR x.s B ) +s ( A x.s yR ) ) -s ( xR x.s yR ) ) } ) |s ( { b | E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) b = ( ( ( xL x.s B ) +s ( A x.s yR ) ) -s ( xL x.s yR ) ) } u. { b | E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) b = ( ( ( xR x.s B ) +s ( A x.s yL ) ) -s ( xR x.s yL ) ) } ) ) ) |
8 |
|
mulsval2 |
|- ( ( A e. No /\ C e. No ) -> ( A x.s C ) = ( ( { b | E. xL e. ( _Left ` A ) E. zL e. ( _Left ` C ) b = ( ( ( xL x.s C ) +s ( A x.s zL ) ) -s ( xL x.s zL ) ) } u. { b | E. xR e. ( _Right ` A ) E. zR e. ( _Right ` C ) b = ( ( ( xR x.s C ) +s ( A x.s zR ) ) -s ( xR x.s zR ) ) } ) |s ( { b | E. xL e. ( _Left ` A ) E. zR e. ( _Right ` C ) b = ( ( ( xL x.s C ) +s ( A x.s zR ) ) -s ( xL x.s zR ) ) } u. { b | E. xR e. ( _Right ` A ) E. zL e. ( _Left ` C ) b = ( ( ( xR x.s C ) +s ( A x.s zL ) ) -s ( xR x.s zL ) ) } ) ) ) |
9 |
1 3 8
|
syl2anc |
|- ( ph -> ( A x.s C ) = ( ( { b | E. xL e. ( _Left ` A ) E. zL e. ( _Left ` C ) b = ( ( ( xL x.s C ) +s ( A x.s zL ) ) -s ( xL x.s zL ) ) } u. { b | E. xR e. ( _Right ` A ) E. zR e. ( _Right ` C ) b = ( ( ( xR x.s C ) +s ( A x.s zR ) ) -s ( xR x.s zR ) ) } ) |s ( { b | E. xL e. ( _Left ` A ) E. zR e. ( _Right ` C ) b = ( ( ( xL x.s C ) +s ( A x.s zR ) ) -s ( xL x.s zR ) ) } u. { b | E. xR e. ( _Right ` A ) E. zL e. ( _Left ` C ) b = ( ( ( xR x.s C ) +s ( A x.s zL ) ) -s ( xR x.s zL ) ) } ) ) ) |
10 |
4 5 7 9
|
addsunif |
|- ( ph -> ( ( A x.s B ) +s ( A x.s C ) ) = ( ( { a | E. t e. ( { b | E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) b = ( ( ( xL x.s B ) +s ( A x.s yL ) ) -s ( xL x.s yL ) ) } u. { b | E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) b = ( ( ( xR x.s B ) +s ( A x.s yR ) ) -s ( xR x.s yR ) ) } ) a = ( t +s ( A x.s C ) ) } u. { a | E. t e. ( { b | E. xL e. ( _Left ` A ) E. zL e. ( _Left ` C ) b = ( ( ( xL x.s C ) +s ( A x.s zL ) ) -s ( xL x.s zL ) ) } u. { b | E. xR e. ( _Right ` A ) E. zR e. ( _Right ` C ) b = ( ( ( xR x.s C ) +s ( A x.s zR ) ) -s ( xR x.s zR ) ) } ) a = ( ( A x.s B ) +s t ) } ) |s ( { a | E. t e. ( { b | E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) b = ( ( ( xL x.s B ) +s ( A x.s yR ) ) -s ( xL x.s yR ) ) } u. { b | E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) b = ( ( ( xR x.s B ) +s ( A x.s yL ) ) -s ( xR x.s yL ) ) } ) a = ( t +s ( A x.s C ) ) } u. { a | E. t e. ( { b | E. xL e. ( _Left ` A ) E. zR e. ( _Right ` C ) b = ( ( ( xL x.s C ) +s ( A x.s zR ) ) -s ( xL x.s zR ) ) } u. { b | E. xR e. ( _Right ` A ) E. zL e. ( _Left ` C ) b = ( ( ( xR x.s C ) +s ( A x.s zL ) ) -s ( xR x.s zL ) ) } ) a = ( ( A x.s B ) +s t ) } ) ) ) |
11 |
|
unab |
|- ( { a | E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) a = ( ( ( ( xL x.s B ) +s ( A x.s yL ) ) -s ( xL x.s yL ) ) +s ( A x.s C ) ) } u. { a | E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) a = ( ( ( ( xR x.s B ) +s ( A x.s yR ) ) -s ( xR x.s yR ) ) +s ( A x.s C ) ) } ) = { a | ( E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) a = ( ( ( ( xL x.s B ) +s ( A x.s yL ) ) -s ( xL x.s yL ) ) +s ( A x.s C ) ) \/ E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) a = ( ( ( ( xR x.s B ) +s ( A x.s yR ) ) -s ( xR x.s yR ) ) +s ( A x.s C ) ) ) } |
12 |
|
rexun |
|- ( E. t e. ( { b | E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) b = ( ( ( xL x.s B ) +s ( A x.s yL ) ) -s ( xL x.s yL ) ) } u. { b | E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) b = ( ( ( xR x.s B ) +s ( A x.s yR ) ) -s ( xR x.s yR ) ) } ) a = ( t +s ( A x.s C ) ) <-> ( E. t e. { b | E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) b = ( ( ( xL x.s B ) +s ( A x.s yL ) ) -s ( xL x.s yL ) ) } a = ( t +s ( A x.s C ) ) \/ E. t e. { b | E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) b = ( ( ( xR x.s B ) +s ( A x.s yR ) ) -s ( xR x.s yR ) ) } a = ( t +s ( A x.s C ) ) ) ) |
13 |
|
eqeq1 |
|- ( b = t -> ( b = ( ( ( xL x.s B ) +s ( A x.s yL ) ) -s ( xL x.s yL ) ) <-> t = ( ( ( xL x.s B ) +s ( A x.s yL ) ) -s ( xL x.s yL ) ) ) ) |
14 |
13
|
2rexbidv |
|- ( b = t -> ( E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) b = ( ( ( xL x.s B ) +s ( A x.s yL ) ) -s ( xL x.s yL ) ) <-> E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) t = ( ( ( xL x.s B ) +s ( A x.s yL ) ) -s ( xL x.s yL ) ) ) ) |
15 |
14
|
rexab |
|- ( E. t e. { b | E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) b = ( ( ( xL x.s B ) +s ( A x.s yL ) ) -s ( xL x.s yL ) ) } a = ( t +s ( A x.s C ) ) <-> E. t ( E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) t = ( ( ( xL x.s B ) +s ( A x.s yL ) ) -s ( xL x.s yL ) ) /\ a = ( t +s ( A x.s C ) ) ) ) |
16 |
|
rexcom4 |
|- ( E. xL e. ( _Left ` A ) E. t E. yL e. ( _Left ` B ) ( t = ( ( ( xL x.s B ) +s ( A x.s yL ) ) -s ( xL x.s yL ) ) /\ a = ( t +s ( A x.s C ) ) ) <-> E. t E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) ( t = ( ( ( xL x.s B ) +s ( A x.s yL ) ) -s ( xL x.s yL ) ) /\ a = ( t +s ( A x.s C ) ) ) ) |
17 |
|
rexcom4 |
|- ( E. yL e. ( _Left ` B ) E. t ( t = ( ( ( xL x.s B ) +s ( A x.s yL ) ) -s ( xL x.s yL ) ) /\ a = ( t +s ( A x.s C ) ) ) <-> E. t E. yL e. ( _Left ` B ) ( t = ( ( ( xL x.s B ) +s ( A x.s yL ) ) -s ( xL x.s yL ) ) /\ a = ( t +s ( A x.s C ) ) ) ) |
18 |
|
ovex |
|- ( ( ( xL x.s B ) +s ( A x.s yL ) ) -s ( xL x.s yL ) ) e. _V |
19 |
|
oveq1 |
|- ( t = ( ( ( xL x.s B ) +s ( A x.s yL ) ) -s ( xL x.s yL ) ) -> ( t +s ( A x.s C ) ) = ( ( ( ( xL x.s B ) +s ( A x.s yL ) ) -s ( xL x.s yL ) ) +s ( A x.s C ) ) ) |
20 |
19
|
eqeq2d |
|- ( t = ( ( ( xL x.s B ) +s ( A x.s yL ) ) -s ( xL x.s yL ) ) -> ( a = ( t +s ( A x.s C ) ) <-> a = ( ( ( ( xL x.s B ) +s ( A x.s yL ) ) -s ( xL x.s yL ) ) +s ( A x.s C ) ) ) ) |
21 |
18 20
|
ceqsexv |
|- ( E. t ( t = ( ( ( xL x.s B ) +s ( A x.s yL ) ) -s ( xL x.s yL ) ) /\ a = ( t +s ( A x.s C ) ) ) <-> a = ( ( ( ( xL x.s B ) +s ( A x.s yL ) ) -s ( xL x.s yL ) ) +s ( A x.s C ) ) ) |
22 |
21
|
rexbii |
|- ( E. yL e. ( _Left ` B ) E. t ( t = ( ( ( xL x.s B ) +s ( A x.s yL ) ) -s ( xL x.s yL ) ) /\ a = ( t +s ( A x.s C ) ) ) <-> E. yL e. ( _Left ` B ) a = ( ( ( ( xL x.s B ) +s ( A x.s yL ) ) -s ( xL x.s yL ) ) +s ( A x.s C ) ) ) |
23 |
17 22
|
bitr3i |
|- ( E. t E. yL e. ( _Left ` B ) ( t = ( ( ( xL x.s B ) +s ( A x.s yL ) ) -s ( xL x.s yL ) ) /\ a = ( t +s ( A x.s C ) ) ) <-> E. yL e. ( _Left ` B ) a = ( ( ( ( xL x.s B ) +s ( A x.s yL ) ) -s ( xL x.s yL ) ) +s ( A x.s C ) ) ) |
24 |
23
|
rexbii |
|- ( E. xL e. ( _Left ` A ) E. t E. yL e. ( _Left ` B ) ( t = ( ( ( xL x.s B ) +s ( A x.s yL ) ) -s ( xL x.s yL ) ) /\ a = ( t +s ( A x.s C ) ) ) <-> E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) a = ( ( ( ( xL x.s B ) +s ( A x.s yL ) ) -s ( xL x.s yL ) ) +s ( A x.s C ) ) ) |
25 |
|
r19.41vv |
|- ( E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) ( t = ( ( ( xL x.s B ) +s ( A x.s yL ) ) -s ( xL x.s yL ) ) /\ a = ( t +s ( A x.s C ) ) ) <-> ( E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) t = ( ( ( xL x.s B ) +s ( A x.s yL ) ) -s ( xL x.s yL ) ) /\ a = ( t +s ( A x.s C ) ) ) ) |
26 |
25
|
exbii |
|- ( E. t E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) ( t = ( ( ( xL x.s B ) +s ( A x.s yL ) ) -s ( xL x.s yL ) ) /\ a = ( t +s ( A x.s C ) ) ) <-> E. t ( E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) t = ( ( ( xL x.s B ) +s ( A x.s yL ) ) -s ( xL x.s yL ) ) /\ a = ( t +s ( A x.s C ) ) ) ) |
27 |
16 24 26
|
3bitr3ri |
|- ( E. t ( E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) t = ( ( ( xL x.s B ) +s ( A x.s yL ) ) -s ( xL x.s yL ) ) /\ a = ( t +s ( A x.s C ) ) ) <-> E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) a = ( ( ( ( xL x.s B ) +s ( A x.s yL ) ) -s ( xL x.s yL ) ) +s ( A x.s C ) ) ) |
28 |
15 27
|
bitri |
|- ( E. t e. { b | E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) b = ( ( ( xL x.s B ) +s ( A x.s yL ) ) -s ( xL x.s yL ) ) } a = ( t +s ( A x.s C ) ) <-> E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) a = ( ( ( ( xL x.s B ) +s ( A x.s yL ) ) -s ( xL x.s yL ) ) +s ( A x.s C ) ) ) |
29 |
|
eqeq1 |
|- ( b = t -> ( b = ( ( ( xR x.s B ) +s ( A x.s yR ) ) -s ( xR x.s yR ) ) <-> t = ( ( ( xR x.s B ) +s ( A x.s yR ) ) -s ( xR x.s yR ) ) ) ) |
30 |
29
|
2rexbidv |
|- ( b = t -> ( E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) b = ( ( ( xR x.s B ) +s ( A x.s yR ) ) -s ( xR x.s yR ) ) <-> E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) t = ( ( ( xR x.s B ) +s ( A x.s yR ) ) -s ( xR x.s yR ) ) ) ) |
31 |
30
|
rexab |
|- ( E. t e. { b | E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) b = ( ( ( xR x.s B ) +s ( A x.s yR ) ) -s ( xR x.s yR ) ) } a = ( t +s ( A x.s C ) ) <-> E. t ( E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) t = ( ( ( xR x.s B ) +s ( A x.s yR ) ) -s ( xR x.s yR ) ) /\ a = ( t +s ( A x.s C ) ) ) ) |
32 |
|
rexcom4 |
|- ( E. xR e. ( _Right ` A ) E. t E. yR e. ( _Right ` B ) ( t = ( ( ( xR x.s B ) +s ( A x.s yR ) ) -s ( xR x.s yR ) ) /\ a = ( t +s ( A x.s C ) ) ) <-> E. t E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) ( t = ( ( ( xR x.s B ) +s ( A x.s yR ) ) -s ( xR x.s yR ) ) /\ a = ( t +s ( A x.s C ) ) ) ) |
33 |
|
rexcom4 |
|- ( E. yR e. ( _Right ` B ) E. t ( t = ( ( ( xR x.s B ) +s ( A x.s yR ) ) -s ( xR x.s yR ) ) /\ a = ( t +s ( A x.s C ) ) ) <-> E. t E. yR e. ( _Right ` B ) ( t = ( ( ( xR x.s B ) +s ( A x.s yR ) ) -s ( xR x.s yR ) ) /\ a = ( t +s ( A x.s C ) ) ) ) |
34 |
|
ovex |
|- ( ( ( xR x.s B ) +s ( A x.s yR ) ) -s ( xR x.s yR ) ) e. _V |
35 |
|
oveq1 |
|- ( t = ( ( ( xR x.s B ) +s ( A x.s yR ) ) -s ( xR x.s yR ) ) -> ( t +s ( A x.s C ) ) = ( ( ( ( xR x.s B ) +s ( A x.s yR ) ) -s ( xR x.s yR ) ) +s ( A x.s C ) ) ) |
36 |
35
|
eqeq2d |
|- ( t = ( ( ( xR x.s B ) +s ( A x.s yR ) ) -s ( xR x.s yR ) ) -> ( a = ( t +s ( A x.s C ) ) <-> a = ( ( ( ( xR x.s B ) +s ( A x.s yR ) ) -s ( xR x.s yR ) ) +s ( A x.s C ) ) ) ) |
37 |
34 36
|
ceqsexv |
|- ( E. t ( t = ( ( ( xR x.s B ) +s ( A x.s yR ) ) -s ( xR x.s yR ) ) /\ a = ( t +s ( A x.s C ) ) ) <-> a = ( ( ( ( xR x.s B ) +s ( A x.s yR ) ) -s ( xR x.s yR ) ) +s ( A x.s C ) ) ) |
38 |
37
|
rexbii |
|- ( E. yR e. ( _Right ` B ) E. t ( t = ( ( ( xR x.s B ) +s ( A x.s yR ) ) -s ( xR x.s yR ) ) /\ a = ( t +s ( A x.s C ) ) ) <-> E. yR e. ( _Right ` B ) a = ( ( ( ( xR x.s B ) +s ( A x.s yR ) ) -s ( xR x.s yR ) ) +s ( A x.s C ) ) ) |
39 |
33 38
|
bitr3i |
|- ( E. t E. yR e. ( _Right ` B ) ( t = ( ( ( xR x.s B ) +s ( A x.s yR ) ) -s ( xR x.s yR ) ) /\ a = ( t +s ( A x.s C ) ) ) <-> E. yR e. ( _Right ` B ) a = ( ( ( ( xR x.s B ) +s ( A x.s yR ) ) -s ( xR x.s yR ) ) +s ( A x.s C ) ) ) |
40 |
39
|
rexbii |
|- ( E. xR e. ( _Right ` A ) E. t E. yR e. ( _Right ` B ) ( t = ( ( ( xR x.s B ) +s ( A x.s yR ) ) -s ( xR x.s yR ) ) /\ a = ( t +s ( A x.s C ) ) ) <-> E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) a = ( ( ( ( xR x.s B ) +s ( A x.s yR ) ) -s ( xR x.s yR ) ) +s ( A x.s C ) ) ) |
41 |
|
r19.41vv |
|- ( E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) ( t = ( ( ( xR x.s B ) +s ( A x.s yR ) ) -s ( xR x.s yR ) ) /\ a = ( t +s ( A x.s C ) ) ) <-> ( E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) t = ( ( ( xR x.s B ) +s ( A x.s yR ) ) -s ( xR x.s yR ) ) /\ a = ( t +s ( A x.s C ) ) ) ) |
42 |
41
|
exbii |
|- ( E. t E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) ( t = ( ( ( xR x.s B ) +s ( A x.s yR ) ) -s ( xR x.s yR ) ) /\ a = ( t +s ( A x.s C ) ) ) <-> E. t ( E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) t = ( ( ( xR x.s B ) +s ( A x.s yR ) ) -s ( xR x.s yR ) ) /\ a = ( t +s ( A x.s C ) ) ) ) |
43 |
32 40 42
|
3bitr3ri |
|- ( E. t ( E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) t = ( ( ( xR x.s B ) +s ( A x.s yR ) ) -s ( xR x.s yR ) ) /\ a = ( t +s ( A x.s C ) ) ) <-> E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) a = ( ( ( ( xR x.s B ) +s ( A x.s yR ) ) -s ( xR x.s yR ) ) +s ( A x.s C ) ) ) |
44 |
31 43
|
bitri |
|- ( E. t e. { b | E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) b = ( ( ( xR x.s B ) +s ( A x.s yR ) ) -s ( xR x.s yR ) ) } a = ( t +s ( A x.s C ) ) <-> E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) a = ( ( ( ( xR x.s B ) +s ( A x.s yR ) ) -s ( xR x.s yR ) ) +s ( A x.s C ) ) ) |
45 |
28 44
|
orbi12i |
|- ( ( E. t e. { b | E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) b = ( ( ( xL x.s B ) +s ( A x.s yL ) ) -s ( xL x.s yL ) ) } a = ( t +s ( A x.s C ) ) \/ E. t e. { b | E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) b = ( ( ( xR x.s B ) +s ( A x.s yR ) ) -s ( xR x.s yR ) ) } a = ( t +s ( A x.s C ) ) ) <-> ( E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) a = ( ( ( ( xL x.s B ) +s ( A x.s yL ) ) -s ( xL x.s yL ) ) +s ( A x.s C ) ) \/ E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) a = ( ( ( ( xR x.s B ) +s ( A x.s yR ) ) -s ( xR x.s yR ) ) +s ( A x.s C ) ) ) ) |
46 |
12 45
|
bitr2i |
|- ( ( E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) a = ( ( ( ( xL x.s B ) +s ( A x.s yL ) ) -s ( xL x.s yL ) ) +s ( A x.s C ) ) \/ E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) a = ( ( ( ( xR x.s B ) +s ( A x.s yR ) ) -s ( xR x.s yR ) ) +s ( A x.s C ) ) ) <-> E. t e. ( { b | E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) b = ( ( ( xL x.s B ) +s ( A x.s yL ) ) -s ( xL x.s yL ) ) } u. { b | E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) b = ( ( ( xR x.s B ) +s ( A x.s yR ) ) -s ( xR x.s yR ) ) } ) a = ( t +s ( A x.s C ) ) ) |
47 |
46
|
abbii |
|- { a | ( E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) a = ( ( ( ( xL x.s B ) +s ( A x.s yL ) ) -s ( xL x.s yL ) ) +s ( A x.s C ) ) \/ E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) a = ( ( ( ( xR x.s B ) +s ( A x.s yR ) ) -s ( xR x.s yR ) ) +s ( A x.s C ) ) ) } = { a | E. t e. ( { b | E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) b = ( ( ( xL x.s B ) +s ( A x.s yL ) ) -s ( xL x.s yL ) ) } u. { b | E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) b = ( ( ( xR x.s B ) +s ( A x.s yR ) ) -s ( xR x.s yR ) ) } ) a = ( t +s ( A x.s C ) ) } |
48 |
11 47
|
eqtri |
|- ( { a | E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) a = ( ( ( ( xL x.s B ) +s ( A x.s yL ) ) -s ( xL x.s yL ) ) +s ( A x.s C ) ) } u. { a | E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) a = ( ( ( ( xR x.s B ) +s ( A x.s yR ) ) -s ( xR x.s yR ) ) +s ( A x.s C ) ) } ) = { a | E. t e. ( { b | E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) b = ( ( ( xL x.s B ) +s ( A x.s yL ) ) -s ( xL x.s yL ) ) } u. { b | E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) b = ( ( ( xR x.s B ) +s ( A x.s yR ) ) -s ( xR x.s yR ) ) } ) a = ( t +s ( A x.s C ) ) } |
49 |
|
unab |
|- ( { a | E. xL e. ( _Left ` A ) E. zL e. ( _Left ` C ) a = ( ( A x.s B ) +s ( ( ( xL x.s C ) +s ( A x.s zL ) ) -s ( xL x.s zL ) ) ) } u. { a | E. xR e. ( _Right ` A ) E. zR e. ( _Right ` C ) a = ( ( A x.s B ) +s ( ( ( xR x.s C ) +s ( A x.s zR ) ) -s ( xR x.s zR ) ) ) } ) = { a | ( E. xL e. ( _Left ` A ) E. zL e. ( _Left ` C ) a = ( ( A x.s B ) +s ( ( ( xL x.s C ) +s ( A x.s zL ) ) -s ( xL x.s zL ) ) ) \/ E. xR e. ( _Right ` A ) E. zR e. ( _Right ` C ) a = ( ( A x.s B ) +s ( ( ( xR x.s C ) +s ( A x.s zR ) ) -s ( xR x.s zR ) ) ) ) } |
50 |
|
rexun |
|- ( E. t e. ( { b | E. xL e. ( _Left ` A ) E. zL e. ( _Left ` C ) b = ( ( ( xL x.s C ) +s ( A x.s zL ) ) -s ( xL x.s zL ) ) } u. { b | E. xR e. ( _Right ` A ) E. zR e. ( _Right ` C ) b = ( ( ( xR x.s C ) +s ( A x.s zR ) ) -s ( xR x.s zR ) ) } ) a = ( ( A x.s B ) +s t ) <-> ( E. t e. { b | E. xL e. ( _Left ` A ) E. zL e. ( _Left ` C ) b = ( ( ( xL x.s C ) +s ( A x.s zL ) ) -s ( xL x.s zL ) ) } a = ( ( A x.s B ) +s t ) \/ E. t e. { b | E. xR e. ( _Right ` A ) E. zR e. ( _Right ` C ) b = ( ( ( xR x.s C ) +s ( A x.s zR ) ) -s ( xR x.s zR ) ) } a = ( ( A x.s B ) +s t ) ) ) |
51 |
|
eqeq1 |
|- ( b = t -> ( b = ( ( ( xL x.s C ) +s ( A x.s zL ) ) -s ( xL x.s zL ) ) <-> t = ( ( ( xL x.s C ) +s ( A x.s zL ) ) -s ( xL x.s zL ) ) ) ) |
52 |
51
|
2rexbidv |
|- ( b = t -> ( E. xL e. ( _Left ` A ) E. zL e. ( _Left ` C ) b = ( ( ( xL x.s C ) +s ( A x.s zL ) ) -s ( xL x.s zL ) ) <-> E. xL e. ( _Left ` A ) E. zL e. ( _Left ` C ) t = ( ( ( xL x.s C ) +s ( A x.s zL ) ) -s ( xL x.s zL ) ) ) ) |
53 |
52
|
rexab |
|- ( E. t e. { b | E. xL e. ( _Left ` A ) E. zL e. ( _Left ` C ) b = ( ( ( xL x.s C ) +s ( A x.s zL ) ) -s ( xL x.s zL ) ) } a = ( ( A x.s B ) +s t ) <-> E. t ( E. xL e. ( _Left ` A ) E. zL e. ( _Left ` C ) t = ( ( ( xL x.s C ) +s ( A x.s zL ) ) -s ( xL x.s zL ) ) /\ a = ( ( A x.s B ) +s t ) ) ) |
54 |
|
rexcom4 |
|- ( E. xL e. ( _Left ` A ) E. t E. zL e. ( _Left ` C ) ( t = ( ( ( xL x.s C ) +s ( A x.s zL ) ) -s ( xL x.s zL ) ) /\ a = ( ( A x.s B ) +s t ) ) <-> E. t E. xL e. ( _Left ` A ) E. zL e. ( _Left ` C ) ( t = ( ( ( xL x.s C ) +s ( A x.s zL ) ) -s ( xL x.s zL ) ) /\ a = ( ( A x.s B ) +s t ) ) ) |
55 |
|
rexcom4 |
|- ( E. zL e. ( _Left ` C ) E. t ( t = ( ( ( xL x.s C ) +s ( A x.s zL ) ) -s ( xL x.s zL ) ) /\ a = ( ( A x.s B ) +s t ) ) <-> E. t E. zL e. ( _Left ` C ) ( t = ( ( ( xL x.s C ) +s ( A x.s zL ) ) -s ( xL x.s zL ) ) /\ a = ( ( A x.s B ) +s t ) ) ) |
56 |
|
ovex |
|- ( ( ( xL x.s C ) +s ( A x.s zL ) ) -s ( xL x.s zL ) ) e. _V |
57 |
|
oveq2 |
|- ( t = ( ( ( xL x.s C ) +s ( A x.s zL ) ) -s ( xL x.s zL ) ) -> ( ( A x.s B ) +s t ) = ( ( A x.s B ) +s ( ( ( xL x.s C ) +s ( A x.s zL ) ) -s ( xL x.s zL ) ) ) ) |
58 |
57
|
eqeq2d |
|- ( t = ( ( ( xL x.s C ) +s ( A x.s zL ) ) -s ( xL x.s zL ) ) -> ( a = ( ( A x.s B ) +s t ) <-> a = ( ( A x.s B ) +s ( ( ( xL x.s C ) +s ( A x.s zL ) ) -s ( xL x.s zL ) ) ) ) ) |
59 |
56 58
|
ceqsexv |
|- ( E. t ( t = ( ( ( xL x.s C ) +s ( A x.s zL ) ) -s ( xL x.s zL ) ) /\ a = ( ( A x.s B ) +s t ) ) <-> a = ( ( A x.s B ) +s ( ( ( xL x.s C ) +s ( A x.s zL ) ) -s ( xL x.s zL ) ) ) ) |
60 |
59
|
rexbii |
|- ( E. zL e. ( _Left ` C ) E. t ( t = ( ( ( xL x.s C ) +s ( A x.s zL ) ) -s ( xL x.s zL ) ) /\ a = ( ( A x.s B ) +s t ) ) <-> E. zL e. ( _Left ` C ) a = ( ( A x.s B ) +s ( ( ( xL x.s C ) +s ( A x.s zL ) ) -s ( xL x.s zL ) ) ) ) |
61 |
55 60
|
bitr3i |
|- ( E. t E. zL e. ( _Left ` C ) ( t = ( ( ( xL x.s C ) +s ( A x.s zL ) ) -s ( xL x.s zL ) ) /\ a = ( ( A x.s B ) +s t ) ) <-> E. zL e. ( _Left ` C ) a = ( ( A x.s B ) +s ( ( ( xL x.s C ) +s ( A x.s zL ) ) -s ( xL x.s zL ) ) ) ) |
62 |
61
|
rexbii |
|- ( E. xL e. ( _Left ` A ) E. t E. zL e. ( _Left ` C ) ( t = ( ( ( xL x.s C ) +s ( A x.s zL ) ) -s ( xL x.s zL ) ) /\ a = ( ( A x.s B ) +s t ) ) <-> E. xL e. ( _Left ` A ) E. zL e. ( _Left ` C ) a = ( ( A x.s B ) +s ( ( ( xL x.s C ) +s ( A x.s zL ) ) -s ( xL x.s zL ) ) ) ) |
63 |
|
r19.41vv |
|- ( E. xL e. ( _Left ` A ) E. zL e. ( _Left ` C ) ( t = ( ( ( xL x.s C ) +s ( A x.s zL ) ) -s ( xL x.s zL ) ) /\ a = ( ( A x.s B ) +s t ) ) <-> ( E. xL e. ( _Left ` A ) E. zL e. ( _Left ` C ) t = ( ( ( xL x.s C ) +s ( A x.s zL ) ) -s ( xL x.s zL ) ) /\ a = ( ( A x.s B ) +s t ) ) ) |
64 |
63
|
exbii |
|- ( E. t E. xL e. ( _Left ` A ) E. zL e. ( _Left ` C ) ( t = ( ( ( xL x.s C ) +s ( A x.s zL ) ) -s ( xL x.s zL ) ) /\ a = ( ( A x.s B ) +s t ) ) <-> E. t ( E. xL e. ( _Left ` A ) E. zL e. ( _Left ` C ) t = ( ( ( xL x.s C ) +s ( A x.s zL ) ) -s ( xL x.s zL ) ) /\ a = ( ( A x.s B ) +s t ) ) ) |
65 |
54 62 64
|
3bitr3ri |
|- ( E. t ( E. xL e. ( _Left ` A ) E. zL e. ( _Left ` C ) t = ( ( ( xL x.s C ) +s ( A x.s zL ) ) -s ( xL x.s zL ) ) /\ a = ( ( A x.s B ) +s t ) ) <-> E. xL e. ( _Left ` A ) E. zL e. ( _Left ` C ) a = ( ( A x.s B ) +s ( ( ( xL x.s C ) +s ( A x.s zL ) ) -s ( xL x.s zL ) ) ) ) |
66 |
53 65
|
bitri |
|- ( E. t e. { b | E. xL e. ( _Left ` A ) E. zL e. ( _Left ` C ) b = ( ( ( xL x.s C ) +s ( A x.s zL ) ) -s ( xL x.s zL ) ) } a = ( ( A x.s B ) +s t ) <-> E. xL e. ( _Left ` A ) E. zL e. ( _Left ` C ) a = ( ( A x.s B ) +s ( ( ( xL x.s C ) +s ( A x.s zL ) ) -s ( xL x.s zL ) ) ) ) |
67 |
|
eqeq1 |
|- ( b = t -> ( b = ( ( ( xR x.s C ) +s ( A x.s zR ) ) -s ( xR x.s zR ) ) <-> t = ( ( ( xR x.s C ) +s ( A x.s zR ) ) -s ( xR x.s zR ) ) ) ) |
68 |
67
|
2rexbidv |
|- ( b = t -> ( E. xR e. ( _Right ` A ) E. zR e. ( _Right ` C ) b = ( ( ( xR x.s C ) +s ( A x.s zR ) ) -s ( xR x.s zR ) ) <-> E. xR e. ( _Right ` A ) E. zR e. ( _Right ` C ) t = ( ( ( xR x.s C ) +s ( A x.s zR ) ) -s ( xR x.s zR ) ) ) ) |
69 |
68
|
rexab |
|- ( E. t e. { b | E. xR e. ( _Right ` A ) E. zR e. ( _Right ` C ) b = ( ( ( xR x.s C ) +s ( A x.s zR ) ) -s ( xR x.s zR ) ) } a = ( ( A x.s B ) +s t ) <-> E. t ( E. xR e. ( _Right ` A ) E. zR e. ( _Right ` C ) t = ( ( ( xR x.s C ) +s ( A x.s zR ) ) -s ( xR x.s zR ) ) /\ a = ( ( A x.s B ) +s t ) ) ) |
70 |
|
rexcom4 |
|- ( E. xR e. ( _Right ` A ) E. t E. zR e. ( _Right ` C ) ( t = ( ( ( xR x.s C ) +s ( A x.s zR ) ) -s ( xR x.s zR ) ) /\ a = ( ( A x.s B ) +s t ) ) <-> E. t E. xR e. ( _Right ` A ) E. zR e. ( _Right ` C ) ( t = ( ( ( xR x.s C ) +s ( A x.s zR ) ) -s ( xR x.s zR ) ) /\ a = ( ( A x.s B ) +s t ) ) ) |
71 |
|
rexcom4 |
|- ( E. zR e. ( _Right ` C ) E. t ( t = ( ( ( xR x.s C ) +s ( A x.s zR ) ) -s ( xR x.s zR ) ) /\ a = ( ( A x.s B ) +s t ) ) <-> E. t E. zR e. ( _Right ` C ) ( t = ( ( ( xR x.s C ) +s ( A x.s zR ) ) -s ( xR x.s zR ) ) /\ a = ( ( A x.s B ) +s t ) ) ) |
72 |
|
ovex |
|- ( ( ( xR x.s C ) +s ( A x.s zR ) ) -s ( xR x.s zR ) ) e. _V |
73 |
|
oveq2 |
|- ( t = ( ( ( xR x.s C ) +s ( A x.s zR ) ) -s ( xR x.s zR ) ) -> ( ( A x.s B ) +s t ) = ( ( A x.s B ) +s ( ( ( xR x.s C ) +s ( A x.s zR ) ) -s ( xR x.s zR ) ) ) ) |
74 |
73
|
eqeq2d |
|- ( t = ( ( ( xR x.s C ) +s ( A x.s zR ) ) -s ( xR x.s zR ) ) -> ( a = ( ( A x.s B ) +s t ) <-> a = ( ( A x.s B ) +s ( ( ( xR x.s C ) +s ( A x.s zR ) ) -s ( xR x.s zR ) ) ) ) ) |
75 |
72 74
|
ceqsexv |
|- ( E. t ( t = ( ( ( xR x.s C ) +s ( A x.s zR ) ) -s ( xR x.s zR ) ) /\ a = ( ( A x.s B ) +s t ) ) <-> a = ( ( A x.s B ) +s ( ( ( xR x.s C ) +s ( A x.s zR ) ) -s ( xR x.s zR ) ) ) ) |
76 |
75
|
rexbii |
|- ( E. zR e. ( _Right ` C ) E. t ( t = ( ( ( xR x.s C ) +s ( A x.s zR ) ) -s ( xR x.s zR ) ) /\ a = ( ( A x.s B ) +s t ) ) <-> E. zR e. ( _Right ` C ) a = ( ( A x.s B ) +s ( ( ( xR x.s C ) +s ( A x.s zR ) ) -s ( xR x.s zR ) ) ) ) |
77 |
71 76
|
bitr3i |
|- ( E. t E. zR e. ( _Right ` C ) ( t = ( ( ( xR x.s C ) +s ( A x.s zR ) ) -s ( xR x.s zR ) ) /\ a = ( ( A x.s B ) +s t ) ) <-> E. zR e. ( _Right ` C ) a = ( ( A x.s B ) +s ( ( ( xR x.s C ) +s ( A x.s zR ) ) -s ( xR x.s zR ) ) ) ) |
78 |
77
|
rexbii |
|- ( E. xR e. ( _Right ` A ) E. t E. zR e. ( _Right ` C ) ( t = ( ( ( xR x.s C ) +s ( A x.s zR ) ) -s ( xR x.s zR ) ) /\ a = ( ( A x.s B ) +s t ) ) <-> E. xR e. ( _Right ` A ) E. zR e. ( _Right ` C ) a = ( ( A x.s B ) +s ( ( ( xR x.s C ) +s ( A x.s zR ) ) -s ( xR x.s zR ) ) ) ) |
79 |
|
r19.41vv |
|- ( E. xR e. ( _Right ` A ) E. zR e. ( _Right ` C ) ( t = ( ( ( xR x.s C ) +s ( A x.s zR ) ) -s ( xR x.s zR ) ) /\ a = ( ( A x.s B ) +s t ) ) <-> ( E. xR e. ( _Right ` A ) E. zR e. ( _Right ` C ) t = ( ( ( xR x.s C ) +s ( A x.s zR ) ) -s ( xR x.s zR ) ) /\ a = ( ( A x.s B ) +s t ) ) ) |
80 |
79
|
exbii |
|- ( E. t E. xR e. ( _Right ` A ) E. zR e. ( _Right ` C ) ( t = ( ( ( xR x.s C ) +s ( A x.s zR ) ) -s ( xR x.s zR ) ) /\ a = ( ( A x.s B ) +s t ) ) <-> E. t ( E. xR e. ( _Right ` A ) E. zR e. ( _Right ` C ) t = ( ( ( xR x.s C ) +s ( A x.s zR ) ) -s ( xR x.s zR ) ) /\ a = ( ( A x.s B ) +s t ) ) ) |
81 |
70 78 80
|
3bitr3ri |
|- ( E. t ( E. xR e. ( _Right ` A ) E. zR e. ( _Right ` C ) t = ( ( ( xR x.s C ) +s ( A x.s zR ) ) -s ( xR x.s zR ) ) /\ a = ( ( A x.s B ) +s t ) ) <-> E. xR e. ( _Right ` A ) E. zR e. ( _Right ` C ) a = ( ( A x.s B ) +s ( ( ( xR x.s C ) +s ( A x.s zR ) ) -s ( xR x.s zR ) ) ) ) |
82 |
69 81
|
bitri |
|- ( E. t e. { b | E. xR e. ( _Right ` A ) E. zR e. ( _Right ` C ) b = ( ( ( xR x.s C ) +s ( A x.s zR ) ) -s ( xR x.s zR ) ) } a = ( ( A x.s B ) +s t ) <-> E. xR e. ( _Right ` A ) E. zR e. ( _Right ` C ) a = ( ( A x.s B ) +s ( ( ( xR x.s C ) +s ( A x.s zR ) ) -s ( xR x.s zR ) ) ) ) |
83 |
66 82
|
orbi12i |
|- ( ( E. t e. { b | E. xL e. ( _Left ` A ) E. zL e. ( _Left ` C ) b = ( ( ( xL x.s C ) +s ( A x.s zL ) ) -s ( xL x.s zL ) ) } a = ( ( A x.s B ) +s t ) \/ E. t e. { b | E. xR e. ( _Right ` A ) E. zR e. ( _Right ` C ) b = ( ( ( xR x.s C ) +s ( A x.s zR ) ) -s ( xR x.s zR ) ) } a = ( ( A x.s B ) +s t ) ) <-> ( E. xL e. ( _Left ` A ) E. zL e. ( _Left ` C ) a = ( ( A x.s B ) +s ( ( ( xL x.s C ) +s ( A x.s zL ) ) -s ( xL x.s zL ) ) ) \/ E. xR e. ( _Right ` A ) E. zR e. ( _Right ` C ) a = ( ( A x.s B ) +s ( ( ( xR x.s C ) +s ( A x.s zR ) ) -s ( xR x.s zR ) ) ) ) ) |
84 |
50 83
|
bitr2i |
|- ( ( E. xL e. ( _Left ` A ) E. zL e. ( _Left ` C ) a = ( ( A x.s B ) +s ( ( ( xL x.s C ) +s ( A x.s zL ) ) -s ( xL x.s zL ) ) ) \/ E. xR e. ( _Right ` A ) E. zR e. ( _Right ` C ) a = ( ( A x.s B ) +s ( ( ( xR x.s C ) +s ( A x.s zR ) ) -s ( xR x.s zR ) ) ) ) <-> E. t e. ( { b | E. xL e. ( _Left ` A ) E. zL e. ( _Left ` C ) b = ( ( ( xL x.s C ) +s ( A x.s zL ) ) -s ( xL x.s zL ) ) } u. { b | E. xR e. ( _Right ` A ) E. zR e. ( _Right ` C ) b = ( ( ( xR x.s C ) +s ( A x.s zR ) ) -s ( xR x.s zR ) ) } ) a = ( ( A x.s B ) +s t ) ) |
85 |
84
|
abbii |
|- { a | ( E. xL e. ( _Left ` A ) E. zL e. ( _Left ` C ) a = ( ( A x.s B ) +s ( ( ( xL x.s C ) +s ( A x.s zL ) ) -s ( xL x.s zL ) ) ) \/ E. xR e. ( _Right ` A ) E. zR e. ( _Right ` C ) a = ( ( A x.s B ) +s ( ( ( xR x.s C ) +s ( A x.s zR ) ) -s ( xR x.s zR ) ) ) ) } = { a | E. t e. ( { b | E. xL e. ( _Left ` A ) E. zL e. ( _Left ` C ) b = ( ( ( xL x.s C ) +s ( A x.s zL ) ) -s ( xL x.s zL ) ) } u. { b | E. xR e. ( _Right ` A ) E. zR e. ( _Right ` C ) b = ( ( ( xR x.s C ) +s ( A x.s zR ) ) -s ( xR x.s zR ) ) } ) a = ( ( A x.s B ) +s t ) } |
86 |
49 85
|
eqtri |
|- ( { a | E. xL e. ( _Left ` A ) E. zL e. ( _Left ` C ) a = ( ( A x.s B ) +s ( ( ( xL x.s C ) +s ( A x.s zL ) ) -s ( xL x.s zL ) ) ) } u. { a | E. xR e. ( _Right ` A ) E. zR e. ( _Right ` C ) a = ( ( A x.s B ) +s ( ( ( xR x.s C ) +s ( A x.s zR ) ) -s ( xR x.s zR ) ) ) } ) = { a | E. t e. ( { b | E. xL e. ( _Left ` A ) E. zL e. ( _Left ` C ) b = ( ( ( xL x.s C ) +s ( A x.s zL ) ) -s ( xL x.s zL ) ) } u. { b | E. xR e. ( _Right ` A ) E. zR e. ( _Right ` C ) b = ( ( ( xR x.s C ) +s ( A x.s zR ) ) -s ( xR x.s zR ) ) } ) a = ( ( A x.s B ) +s t ) } |
87 |
48 86
|
uneq12i |
|- ( ( { a | E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) a = ( ( ( ( xL x.s B ) +s ( A x.s yL ) ) -s ( xL x.s yL ) ) +s ( A x.s C ) ) } u. { a | E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) a = ( ( ( ( xR x.s B ) +s ( A x.s yR ) ) -s ( xR x.s yR ) ) +s ( A x.s C ) ) } ) u. ( { a | E. xL e. ( _Left ` A ) E. zL e. ( _Left ` C ) a = ( ( A x.s B ) +s ( ( ( xL x.s C ) +s ( A x.s zL ) ) -s ( xL x.s zL ) ) ) } u. { a | E. xR e. ( _Right ` A ) E. zR e. ( _Right ` C ) a = ( ( A x.s B ) +s ( ( ( xR x.s C ) +s ( A x.s zR ) ) -s ( xR x.s zR ) ) ) } ) ) = ( { a | E. t e. ( { b | E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) b = ( ( ( xL x.s B ) +s ( A x.s yL ) ) -s ( xL x.s yL ) ) } u. { b | E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) b = ( ( ( xR x.s B ) +s ( A x.s yR ) ) -s ( xR x.s yR ) ) } ) a = ( t +s ( A x.s C ) ) } u. { a | E. t e. ( { b | E. xL e. ( _Left ` A ) E. zL e. ( _Left ` C ) b = ( ( ( xL x.s C ) +s ( A x.s zL ) ) -s ( xL x.s zL ) ) } u. { b | E. xR e. ( _Right ` A ) E. zR e. ( _Right ` C ) b = ( ( ( xR x.s C ) +s ( A x.s zR ) ) -s ( xR x.s zR ) ) } ) a = ( ( A x.s B ) +s t ) } ) |
88 |
|
unab |
|- ( { a | E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) a = ( ( ( ( xL x.s B ) +s ( A x.s yR ) ) -s ( xL x.s yR ) ) +s ( A x.s C ) ) } u. { a | E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) a = ( ( ( ( xR x.s B ) +s ( A x.s yL ) ) -s ( xR x.s yL ) ) +s ( A x.s C ) ) } ) = { a | ( E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) a = ( ( ( ( xL x.s B ) +s ( A x.s yR ) ) -s ( xL x.s yR ) ) +s ( A x.s C ) ) \/ E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) a = ( ( ( ( xR x.s B ) +s ( A x.s yL ) ) -s ( xR x.s yL ) ) +s ( A x.s C ) ) ) } |
89 |
|
rexun |
|- ( E. t e. ( { b | E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) b = ( ( ( xL x.s B ) +s ( A x.s yR ) ) -s ( xL x.s yR ) ) } u. { b | E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) b = ( ( ( xR x.s B ) +s ( A x.s yL ) ) -s ( xR x.s yL ) ) } ) a = ( t +s ( A x.s C ) ) <-> ( E. t e. { b | E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) b = ( ( ( xL x.s B ) +s ( A x.s yR ) ) -s ( xL x.s yR ) ) } a = ( t +s ( A x.s C ) ) \/ E. t e. { b | E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) b = ( ( ( xR x.s B ) +s ( A x.s yL ) ) -s ( xR x.s yL ) ) } a = ( t +s ( A x.s C ) ) ) ) |
90 |
|
eqeq1 |
|- ( b = t -> ( b = ( ( ( xL x.s B ) +s ( A x.s yR ) ) -s ( xL x.s yR ) ) <-> t = ( ( ( xL x.s B ) +s ( A x.s yR ) ) -s ( xL x.s yR ) ) ) ) |
91 |
90
|
2rexbidv |
|- ( b = t -> ( E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) b = ( ( ( xL x.s B ) +s ( A x.s yR ) ) -s ( xL x.s yR ) ) <-> E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) t = ( ( ( xL x.s B ) +s ( A x.s yR ) ) -s ( xL x.s yR ) ) ) ) |
92 |
91
|
rexab |
|- ( E. t e. { b | E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) b = ( ( ( xL x.s B ) +s ( A x.s yR ) ) -s ( xL x.s yR ) ) } a = ( t +s ( A x.s C ) ) <-> E. t ( E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) t = ( ( ( xL x.s B ) +s ( A x.s yR ) ) -s ( xL x.s yR ) ) /\ a = ( t +s ( A x.s C ) ) ) ) |
93 |
|
rexcom4 |
|- ( E. xL e. ( _Left ` A ) E. t E. yR e. ( _Right ` B ) ( t = ( ( ( xL x.s B ) +s ( A x.s yR ) ) -s ( xL x.s yR ) ) /\ a = ( t +s ( A x.s C ) ) ) <-> E. t E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) ( t = ( ( ( xL x.s B ) +s ( A x.s yR ) ) -s ( xL x.s yR ) ) /\ a = ( t +s ( A x.s C ) ) ) ) |
94 |
|
rexcom4 |
|- ( E. yR e. ( _Right ` B ) E. t ( t = ( ( ( xL x.s B ) +s ( A x.s yR ) ) -s ( xL x.s yR ) ) /\ a = ( t +s ( A x.s C ) ) ) <-> E. t E. yR e. ( _Right ` B ) ( t = ( ( ( xL x.s B ) +s ( A x.s yR ) ) -s ( xL x.s yR ) ) /\ a = ( t +s ( A x.s C ) ) ) ) |
95 |
|
ovex |
|- ( ( ( xL x.s B ) +s ( A x.s yR ) ) -s ( xL x.s yR ) ) e. _V |
96 |
|
oveq1 |
|- ( t = ( ( ( xL x.s B ) +s ( A x.s yR ) ) -s ( xL x.s yR ) ) -> ( t +s ( A x.s C ) ) = ( ( ( ( xL x.s B ) +s ( A x.s yR ) ) -s ( xL x.s yR ) ) +s ( A x.s C ) ) ) |
97 |
96
|
eqeq2d |
|- ( t = ( ( ( xL x.s B ) +s ( A x.s yR ) ) -s ( xL x.s yR ) ) -> ( a = ( t +s ( A x.s C ) ) <-> a = ( ( ( ( xL x.s B ) +s ( A x.s yR ) ) -s ( xL x.s yR ) ) +s ( A x.s C ) ) ) ) |
98 |
95 97
|
ceqsexv |
|- ( E. t ( t = ( ( ( xL x.s B ) +s ( A x.s yR ) ) -s ( xL x.s yR ) ) /\ a = ( t +s ( A x.s C ) ) ) <-> a = ( ( ( ( xL x.s B ) +s ( A x.s yR ) ) -s ( xL x.s yR ) ) +s ( A x.s C ) ) ) |
99 |
98
|
rexbii |
|- ( E. yR e. ( _Right ` B ) E. t ( t = ( ( ( xL x.s B ) +s ( A x.s yR ) ) -s ( xL x.s yR ) ) /\ a = ( t +s ( A x.s C ) ) ) <-> E. yR e. ( _Right ` B ) a = ( ( ( ( xL x.s B ) +s ( A x.s yR ) ) -s ( xL x.s yR ) ) +s ( A x.s C ) ) ) |
100 |
94 99
|
bitr3i |
|- ( E. t E. yR e. ( _Right ` B ) ( t = ( ( ( xL x.s B ) +s ( A x.s yR ) ) -s ( xL x.s yR ) ) /\ a = ( t +s ( A x.s C ) ) ) <-> E. yR e. ( _Right ` B ) a = ( ( ( ( xL x.s B ) +s ( A x.s yR ) ) -s ( xL x.s yR ) ) +s ( A x.s C ) ) ) |
101 |
100
|
rexbii |
|- ( E. xL e. ( _Left ` A ) E. t E. yR e. ( _Right ` B ) ( t = ( ( ( xL x.s B ) +s ( A x.s yR ) ) -s ( xL x.s yR ) ) /\ a = ( t +s ( A x.s C ) ) ) <-> E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) a = ( ( ( ( xL x.s B ) +s ( A x.s yR ) ) -s ( xL x.s yR ) ) +s ( A x.s C ) ) ) |
102 |
|
r19.41vv |
|- ( E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) ( t = ( ( ( xL x.s B ) +s ( A x.s yR ) ) -s ( xL x.s yR ) ) /\ a = ( t +s ( A x.s C ) ) ) <-> ( E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) t = ( ( ( xL x.s B ) +s ( A x.s yR ) ) -s ( xL x.s yR ) ) /\ a = ( t +s ( A x.s C ) ) ) ) |
103 |
102
|
exbii |
|- ( E. t E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) ( t = ( ( ( xL x.s B ) +s ( A x.s yR ) ) -s ( xL x.s yR ) ) /\ a = ( t +s ( A x.s C ) ) ) <-> E. t ( E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) t = ( ( ( xL x.s B ) +s ( A x.s yR ) ) -s ( xL x.s yR ) ) /\ a = ( t +s ( A x.s C ) ) ) ) |
104 |
93 101 103
|
3bitr3ri |
|- ( E. t ( E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) t = ( ( ( xL x.s B ) +s ( A x.s yR ) ) -s ( xL x.s yR ) ) /\ a = ( t +s ( A x.s C ) ) ) <-> E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) a = ( ( ( ( xL x.s B ) +s ( A x.s yR ) ) -s ( xL x.s yR ) ) +s ( A x.s C ) ) ) |
105 |
92 104
|
bitri |
|- ( E. t e. { b | E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) b = ( ( ( xL x.s B ) +s ( A x.s yR ) ) -s ( xL x.s yR ) ) } a = ( t +s ( A x.s C ) ) <-> E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) a = ( ( ( ( xL x.s B ) +s ( A x.s yR ) ) -s ( xL x.s yR ) ) +s ( A x.s C ) ) ) |
106 |
|
eqeq1 |
|- ( b = t -> ( b = ( ( ( xR x.s B ) +s ( A x.s yL ) ) -s ( xR x.s yL ) ) <-> t = ( ( ( xR x.s B ) +s ( A x.s yL ) ) -s ( xR x.s yL ) ) ) ) |
107 |
106
|
2rexbidv |
|- ( b = t -> ( E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) b = ( ( ( xR x.s B ) +s ( A x.s yL ) ) -s ( xR x.s yL ) ) <-> E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) t = ( ( ( xR x.s B ) +s ( A x.s yL ) ) -s ( xR x.s yL ) ) ) ) |
108 |
107
|
rexab |
|- ( E. t e. { b | E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) b = ( ( ( xR x.s B ) +s ( A x.s yL ) ) -s ( xR x.s yL ) ) } a = ( t +s ( A x.s C ) ) <-> E. t ( E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) t = ( ( ( xR x.s B ) +s ( A x.s yL ) ) -s ( xR x.s yL ) ) /\ a = ( t +s ( A x.s C ) ) ) ) |
109 |
|
rexcom4 |
|- ( E. xR e. ( _Right ` A ) E. t E. yL e. ( _Left ` B ) ( t = ( ( ( xR x.s B ) +s ( A x.s yL ) ) -s ( xR x.s yL ) ) /\ a = ( t +s ( A x.s C ) ) ) <-> E. t E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) ( t = ( ( ( xR x.s B ) +s ( A x.s yL ) ) -s ( xR x.s yL ) ) /\ a = ( t +s ( A x.s C ) ) ) ) |
110 |
|
rexcom4 |
|- ( E. yL e. ( _Left ` B ) E. t ( t = ( ( ( xR x.s B ) +s ( A x.s yL ) ) -s ( xR x.s yL ) ) /\ a = ( t +s ( A x.s C ) ) ) <-> E. t E. yL e. ( _Left ` B ) ( t = ( ( ( xR x.s B ) +s ( A x.s yL ) ) -s ( xR x.s yL ) ) /\ a = ( t +s ( A x.s C ) ) ) ) |
111 |
|
ovex |
|- ( ( ( xR x.s B ) +s ( A x.s yL ) ) -s ( xR x.s yL ) ) e. _V |
112 |
|
oveq1 |
|- ( t = ( ( ( xR x.s B ) +s ( A x.s yL ) ) -s ( xR x.s yL ) ) -> ( t +s ( A x.s C ) ) = ( ( ( ( xR x.s B ) +s ( A x.s yL ) ) -s ( xR x.s yL ) ) +s ( A x.s C ) ) ) |
113 |
112
|
eqeq2d |
|- ( t = ( ( ( xR x.s B ) +s ( A x.s yL ) ) -s ( xR x.s yL ) ) -> ( a = ( t +s ( A x.s C ) ) <-> a = ( ( ( ( xR x.s B ) +s ( A x.s yL ) ) -s ( xR x.s yL ) ) +s ( A x.s C ) ) ) ) |
114 |
111 113
|
ceqsexv |
|- ( E. t ( t = ( ( ( xR x.s B ) +s ( A x.s yL ) ) -s ( xR x.s yL ) ) /\ a = ( t +s ( A x.s C ) ) ) <-> a = ( ( ( ( xR x.s B ) +s ( A x.s yL ) ) -s ( xR x.s yL ) ) +s ( A x.s C ) ) ) |
115 |
114
|
rexbii |
|- ( E. yL e. ( _Left ` B ) E. t ( t = ( ( ( xR x.s B ) +s ( A x.s yL ) ) -s ( xR x.s yL ) ) /\ a = ( t +s ( A x.s C ) ) ) <-> E. yL e. ( _Left ` B ) a = ( ( ( ( xR x.s B ) +s ( A x.s yL ) ) -s ( xR x.s yL ) ) +s ( A x.s C ) ) ) |
116 |
110 115
|
bitr3i |
|- ( E. t E. yL e. ( _Left ` B ) ( t = ( ( ( xR x.s B ) +s ( A x.s yL ) ) -s ( xR x.s yL ) ) /\ a = ( t +s ( A x.s C ) ) ) <-> E. yL e. ( _Left ` B ) a = ( ( ( ( xR x.s B ) +s ( A x.s yL ) ) -s ( xR x.s yL ) ) +s ( A x.s C ) ) ) |
117 |
116
|
rexbii |
|- ( E. xR e. ( _Right ` A ) E. t E. yL e. ( _Left ` B ) ( t = ( ( ( xR x.s B ) +s ( A x.s yL ) ) -s ( xR x.s yL ) ) /\ a = ( t +s ( A x.s C ) ) ) <-> E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) a = ( ( ( ( xR x.s B ) +s ( A x.s yL ) ) -s ( xR x.s yL ) ) +s ( A x.s C ) ) ) |
118 |
|
r19.41vv |
|- ( E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) ( t = ( ( ( xR x.s B ) +s ( A x.s yL ) ) -s ( xR x.s yL ) ) /\ a = ( t +s ( A x.s C ) ) ) <-> ( E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) t = ( ( ( xR x.s B ) +s ( A x.s yL ) ) -s ( xR x.s yL ) ) /\ a = ( t +s ( A x.s C ) ) ) ) |
119 |
118
|
exbii |
|- ( E. t E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) ( t = ( ( ( xR x.s B ) +s ( A x.s yL ) ) -s ( xR x.s yL ) ) /\ a = ( t +s ( A x.s C ) ) ) <-> E. t ( E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) t = ( ( ( xR x.s B ) +s ( A x.s yL ) ) -s ( xR x.s yL ) ) /\ a = ( t +s ( A x.s C ) ) ) ) |
120 |
109 117 119
|
3bitr3ri |
|- ( E. t ( E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) t = ( ( ( xR x.s B ) +s ( A x.s yL ) ) -s ( xR x.s yL ) ) /\ a = ( t +s ( A x.s C ) ) ) <-> E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) a = ( ( ( ( xR x.s B ) +s ( A x.s yL ) ) -s ( xR x.s yL ) ) +s ( A x.s C ) ) ) |
121 |
108 120
|
bitri |
|- ( E. t e. { b | E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) b = ( ( ( xR x.s B ) +s ( A x.s yL ) ) -s ( xR x.s yL ) ) } a = ( t +s ( A x.s C ) ) <-> E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) a = ( ( ( ( xR x.s B ) +s ( A x.s yL ) ) -s ( xR x.s yL ) ) +s ( A x.s C ) ) ) |
122 |
105 121
|
orbi12i |
|- ( ( E. t e. { b | E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) b = ( ( ( xL x.s B ) +s ( A x.s yR ) ) -s ( xL x.s yR ) ) } a = ( t +s ( A x.s C ) ) \/ E. t e. { b | E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) b = ( ( ( xR x.s B ) +s ( A x.s yL ) ) -s ( xR x.s yL ) ) } a = ( t +s ( A x.s C ) ) ) <-> ( E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) a = ( ( ( ( xL x.s B ) +s ( A x.s yR ) ) -s ( xL x.s yR ) ) +s ( A x.s C ) ) \/ E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) a = ( ( ( ( xR x.s B ) +s ( A x.s yL ) ) -s ( xR x.s yL ) ) +s ( A x.s C ) ) ) ) |
123 |
89 122
|
bitr2i |
|- ( ( E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) a = ( ( ( ( xL x.s B ) +s ( A x.s yR ) ) -s ( xL x.s yR ) ) +s ( A x.s C ) ) \/ E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) a = ( ( ( ( xR x.s B ) +s ( A x.s yL ) ) -s ( xR x.s yL ) ) +s ( A x.s C ) ) ) <-> E. t e. ( { b | E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) b = ( ( ( xL x.s B ) +s ( A x.s yR ) ) -s ( xL x.s yR ) ) } u. { b | E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) b = ( ( ( xR x.s B ) +s ( A x.s yL ) ) -s ( xR x.s yL ) ) } ) a = ( t +s ( A x.s C ) ) ) |
124 |
123
|
abbii |
|- { a | ( E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) a = ( ( ( ( xL x.s B ) +s ( A x.s yR ) ) -s ( xL x.s yR ) ) +s ( A x.s C ) ) \/ E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) a = ( ( ( ( xR x.s B ) +s ( A x.s yL ) ) -s ( xR x.s yL ) ) +s ( A x.s C ) ) ) } = { a | E. t e. ( { b | E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) b = ( ( ( xL x.s B ) +s ( A x.s yR ) ) -s ( xL x.s yR ) ) } u. { b | E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) b = ( ( ( xR x.s B ) +s ( A x.s yL ) ) -s ( xR x.s yL ) ) } ) a = ( t +s ( A x.s C ) ) } |
125 |
88 124
|
eqtri |
|- ( { a | E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) a = ( ( ( ( xL x.s B ) +s ( A x.s yR ) ) -s ( xL x.s yR ) ) +s ( A x.s C ) ) } u. { a | E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) a = ( ( ( ( xR x.s B ) +s ( A x.s yL ) ) -s ( xR x.s yL ) ) +s ( A x.s C ) ) } ) = { a | E. t e. ( { b | E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) b = ( ( ( xL x.s B ) +s ( A x.s yR ) ) -s ( xL x.s yR ) ) } u. { b | E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) b = ( ( ( xR x.s B ) +s ( A x.s yL ) ) -s ( xR x.s yL ) ) } ) a = ( t +s ( A x.s C ) ) } |
126 |
|
unab |
|- ( { a | E. xL e. ( _Left ` A ) E. zR e. ( _Right ` C ) a = ( ( A x.s B ) +s ( ( ( xL x.s C ) +s ( A x.s zR ) ) -s ( xL x.s zR ) ) ) } u. { a | E. xR e. ( _Right ` A ) E. zL e. ( _Left ` C ) a = ( ( A x.s B ) +s ( ( ( xR x.s C ) +s ( A x.s zL ) ) -s ( xR x.s zL ) ) ) } ) = { a | ( E. xL e. ( _Left ` A ) E. zR e. ( _Right ` C ) a = ( ( A x.s B ) +s ( ( ( xL x.s C ) +s ( A x.s zR ) ) -s ( xL x.s zR ) ) ) \/ E. xR e. ( _Right ` A ) E. zL e. ( _Left ` C ) a = ( ( A x.s B ) +s ( ( ( xR x.s C ) +s ( A x.s zL ) ) -s ( xR x.s zL ) ) ) ) } |
127 |
|
rexun |
|- ( E. t e. ( { b | E. xL e. ( _Left ` A ) E. zR e. ( _Right ` C ) b = ( ( ( xL x.s C ) +s ( A x.s zR ) ) -s ( xL x.s zR ) ) } u. { b | E. xR e. ( _Right ` A ) E. zL e. ( _Left ` C ) b = ( ( ( xR x.s C ) +s ( A x.s zL ) ) -s ( xR x.s zL ) ) } ) a = ( ( A x.s B ) +s t ) <-> ( E. t e. { b | E. xL e. ( _Left ` A ) E. zR e. ( _Right ` C ) b = ( ( ( xL x.s C ) +s ( A x.s zR ) ) -s ( xL x.s zR ) ) } a = ( ( A x.s B ) +s t ) \/ E. t e. { b | E. xR e. ( _Right ` A ) E. zL e. ( _Left ` C ) b = ( ( ( xR x.s C ) +s ( A x.s zL ) ) -s ( xR x.s zL ) ) } a = ( ( A x.s B ) +s t ) ) ) |
128 |
|
eqeq1 |
|- ( b = t -> ( b = ( ( ( xL x.s C ) +s ( A x.s zR ) ) -s ( xL x.s zR ) ) <-> t = ( ( ( xL x.s C ) +s ( A x.s zR ) ) -s ( xL x.s zR ) ) ) ) |
129 |
128
|
2rexbidv |
|- ( b = t -> ( E. xL e. ( _Left ` A ) E. zR e. ( _Right ` C ) b = ( ( ( xL x.s C ) +s ( A x.s zR ) ) -s ( xL x.s zR ) ) <-> E. xL e. ( _Left ` A ) E. zR e. ( _Right ` C ) t = ( ( ( xL x.s C ) +s ( A x.s zR ) ) -s ( xL x.s zR ) ) ) ) |
130 |
129
|
rexab |
|- ( E. t e. { b | E. xL e. ( _Left ` A ) E. zR e. ( _Right ` C ) b = ( ( ( xL x.s C ) +s ( A x.s zR ) ) -s ( xL x.s zR ) ) } a = ( ( A x.s B ) +s t ) <-> E. t ( E. xL e. ( _Left ` A ) E. zR e. ( _Right ` C ) t = ( ( ( xL x.s C ) +s ( A x.s zR ) ) -s ( xL x.s zR ) ) /\ a = ( ( A x.s B ) +s t ) ) ) |
131 |
|
rexcom4 |
|- ( E. xL e. ( _Left ` A ) E. t E. zR e. ( _Right ` C ) ( t = ( ( ( xL x.s C ) +s ( A x.s zR ) ) -s ( xL x.s zR ) ) /\ a = ( ( A x.s B ) +s t ) ) <-> E. t E. xL e. ( _Left ` A ) E. zR e. ( _Right ` C ) ( t = ( ( ( xL x.s C ) +s ( A x.s zR ) ) -s ( xL x.s zR ) ) /\ a = ( ( A x.s B ) +s t ) ) ) |
132 |
|
rexcom4 |
|- ( E. zR e. ( _Right ` C ) E. t ( t = ( ( ( xL x.s C ) +s ( A x.s zR ) ) -s ( xL x.s zR ) ) /\ a = ( ( A x.s B ) +s t ) ) <-> E. t E. zR e. ( _Right ` C ) ( t = ( ( ( xL x.s C ) +s ( A x.s zR ) ) -s ( xL x.s zR ) ) /\ a = ( ( A x.s B ) +s t ) ) ) |
133 |
|
ovex |
|- ( ( ( xL x.s C ) +s ( A x.s zR ) ) -s ( xL x.s zR ) ) e. _V |
134 |
|
oveq2 |
|- ( t = ( ( ( xL x.s C ) +s ( A x.s zR ) ) -s ( xL x.s zR ) ) -> ( ( A x.s B ) +s t ) = ( ( A x.s B ) +s ( ( ( xL x.s C ) +s ( A x.s zR ) ) -s ( xL x.s zR ) ) ) ) |
135 |
134
|
eqeq2d |
|- ( t = ( ( ( xL x.s C ) +s ( A x.s zR ) ) -s ( xL x.s zR ) ) -> ( a = ( ( A x.s B ) +s t ) <-> a = ( ( A x.s B ) +s ( ( ( xL x.s C ) +s ( A x.s zR ) ) -s ( xL x.s zR ) ) ) ) ) |
136 |
133 135
|
ceqsexv |
|- ( E. t ( t = ( ( ( xL x.s C ) +s ( A x.s zR ) ) -s ( xL x.s zR ) ) /\ a = ( ( A x.s B ) +s t ) ) <-> a = ( ( A x.s B ) +s ( ( ( xL x.s C ) +s ( A x.s zR ) ) -s ( xL x.s zR ) ) ) ) |
137 |
136
|
rexbii |
|- ( E. zR e. ( _Right ` C ) E. t ( t = ( ( ( xL x.s C ) +s ( A x.s zR ) ) -s ( xL x.s zR ) ) /\ a = ( ( A x.s B ) +s t ) ) <-> E. zR e. ( _Right ` C ) a = ( ( A x.s B ) +s ( ( ( xL x.s C ) +s ( A x.s zR ) ) -s ( xL x.s zR ) ) ) ) |
138 |
132 137
|
bitr3i |
|- ( E. t E. zR e. ( _Right ` C ) ( t = ( ( ( xL x.s C ) +s ( A x.s zR ) ) -s ( xL x.s zR ) ) /\ a = ( ( A x.s B ) +s t ) ) <-> E. zR e. ( _Right ` C ) a = ( ( A x.s B ) +s ( ( ( xL x.s C ) +s ( A x.s zR ) ) -s ( xL x.s zR ) ) ) ) |
139 |
138
|
rexbii |
|- ( E. xL e. ( _Left ` A ) E. t E. zR e. ( _Right ` C ) ( t = ( ( ( xL x.s C ) +s ( A x.s zR ) ) -s ( xL x.s zR ) ) /\ a = ( ( A x.s B ) +s t ) ) <-> E. xL e. ( _Left ` A ) E. zR e. ( _Right ` C ) a = ( ( A x.s B ) +s ( ( ( xL x.s C ) +s ( A x.s zR ) ) -s ( xL x.s zR ) ) ) ) |
140 |
|
r19.41vv |
|- ( E. xL e. ( _Left ` A ) E. zR e. ( _Right ` C ) ( t = ( ( ( xL x.s C ) +s ( A x.s zR ) ) -s ( xL x.s zR ) ) /\ a = ( ( A x.s B ) +s t ) ) <-> ( E. xL e. ( _Left ` A ) E. zR e. ( _Right ` C ) t = ( ( ( xL x.s C ) +s ( A x.s zR ) ) -s ( xL x.s zR ) ) /\ a = ( ( A x.s B ) +s t ) ) ) |
141 |
140
|
exbii |
|- ( E. t E. xL e. ( _Left ` A ) E. zR e. ( _Right ` C ) ( t = ( ( ( xL x.s C ) +s ( A x.s zR ) ) -s ( xL x.s zR ) ) /\ a = ( ( A x.s B ) +s t ) ) <-> E. t ( E. xL e. ( _Left ` A ) E. zR e. ( _Right ` C ) t = ( ( ( xL x.s C ) +s ( A x.s zR ) ) -s ( xL x.s zR ) ) /\ a = ( ( A x.s B ) +s t ) ) ) |
142 |
131 139 141
|
3bitr3ri |
|- ( E. t ( E. xL e. ( _Left ` A ) E. zR e. ( _Right ` C ) t = ( ( ( xL x.s C ) +s ( A x.s zR ) ) -s ( xL x.s zR ) ) /\ a = ( ( A x.s B ) +s t ) ) <-> E. xL e. ( _Left ` A ) E. zR e. ( _Right ` C ) a = ( ( A x.s B ) +s ( ( ( xL x.s C ) +s ( A x.s zR ) ) -s ( xL x.s zR ) ) ) ) |
143 |
130 142
|
bitri |
|- ( E. t e. { b | E. xL e. ( _Left ` A ) E. zR e. ( _Right ` C ) b = ( ( ( xL x.s C ) +s ( A x.s zR ) ) -s ( xL x.s zR ) ) } a = ( ( A x.s B ) +s t ) <-> E. xL e. ( _Left ` A ) E. zR e. ( _Right ` C ) a = ( ( A x.s B ) +s ( ( ( xL x.s C ) +s ( A x.s zR ) ) -s ( xL x.s zR ) ) ) ) |
144 |
|
eqeq1 |
|- ( b = t -> ( b = ( ( ( xR x.s C ) +s ( A x.s zL ) ) -s ( xR x.s zL ) ) <-> t = ( ( ( xR x.s C ) +s ( A x.s zL ) ) -s ( xR x.s zL ) ) ) ) |
145 |
144
|
2rexbidv |
|- ( b = t -> ( E. xR e. ( _Right ` A ) E. zL e. ( _Left ` C ) b = ( ( ( xR x.s C ) +s ( A x.s zL ) ) -s ( xR x.s zL ) ) <-> E. xR e. ( _Right ` A ) E. zL e. ( _Left ` C ) t = ( ( ( xR x.s C ) +s ( A x.s zL ) ) -s ( xR x.s zL ) ) ) ) |
146 |
145
|
rexab |
|- ( E. t e. { b | E. xR e. ( _Right ` A ) E. zL e. ( _Left ` C ) b = ( ( ( xR x.s C ) +s ( A x.s zL ) ) -s ( xR x.s zL ) ) } a = ( ( A x.s B ) +s t ) <-> E. t ( E. xR e. ( _Right ` A ) E. zL e. ( _Left ` C ) t = ( ( ( xR x.s C ) +s ( A x.s zL ) ) -s ( xR x.s zL ) ) /\ a = ( ( A x.s B ) +s t ) ) ) |
147 |
|
rexcom4 |
|- ( E. xR e. ( _Right ` A ) E. t E. zL e. ( _Left ` C ) ( t = ( ( ( xR x.s C ) +s ( A x.s zL ) ) -s ( xR x.s zL ) ) /\ a = ( ( A x.s B ) +s t ) ) <-> E. t E. xR e. ( _Right ` A ) E. zL e. ( _Left ` C ) ( t = ( ( ( xR x.s C ) +s ( A x.s zL ) ) -s ( xR x.s zL ) ) /\ a = ( ( A x.s B ) +s t ) ) ) |
148 |
|
rexcom4 |
|- ( E. zL e. ( _Left ` C ) E. t ( t = ( ( ( xR x.s C ) +s ( A x.s zL ) ) -s ( xR x.s zL ) ) /\ a = ( ( A x.s B ) +s t ) ) <-> E. t E. zL e. ( _Left ` C ) ( t = ( ( ( xR x.s C ) +s ( A x.s zL ) ) -s ( xR x.s zL ) ) /\ a = ( ( A x.s B ) +s t ) ) ) |
149 |
|
ovex |
|- ( ( ( xR x.s C ) +s ( A x.s zL ) ) -s ( xR x.s zL ) ) e. _V |
150 |
|
oveq2 |
|- ( t = ( ( ( xR x.s C ) +s ( A x.s zL ) ) -s ( xR x.s zL ) ) -> ( ( A x.s B ) +s t ) = ( ( A x.s B ) +s ( ( ( xR x.s C ) +s ( A x.s zL ) ) -s ( xR x.s zL ) ) ) ) |
151 |
150
|
eqeq2d |
|- ( t = ( ( ( xR x.s C ) +s ( A x.s zL ) ) -s ( xR x.s zL ) ) -> ( a = ( ( A x.s B ) +s t ) <-> a = ( ( A x.s B ) +s ( ( ( xR x.s C ) +s ( A x.s zL ) ) -s ( xR x.s zL ) ) ) ) ) |
152 |
149 151
|
ceqsexv |
|- ( E. t ( t = ( ( ( xR x.s C ) +s ( A x.s zL ) ) -s ( xR x.s zL ) ) /\ a = ( ( A x.s B ) +s t ) ) <-> a = ( ( A x.s B ) +s ( ( ( xR x.s C ) +s ( A x.s zL ) ) -s ( xR x.s zL ) ) ) ) |
153 |
152
|
rexbii |
|- ( E. zL e. ( _Left ` C ) E. t ( t = ( ( ( xR x.s C ) +s ( A x.s zL ) ) -s ( xR x.s zL ) ) /\ a = ( ( A x.s B ) +s t ) ) <-> E. zL e. ( _Left ` C ) a = ( ( A x.s B ) +s ( ( ( xR x.s C ) +s ( A x.s zL ) ) -s ( xR x.s zL ) ) ) ) |
154 |
148 153
|
bitr3i |
|- ( E. t E. zL e. ( _Left ` C ) ( t = ( ( ( xR x.s C ) +s ( A x.s zL ) ) -s ( xR x.s zL ) ) /\ a = ( ( A x.s B ) +s t ) ) <-> E. zL e. ( _Left ` C ) a = ( ( A x.s B ) +s ( ( ( xR x.s C ) +s ( A x.s zL ) ) -s ( xR x.s zL ) ) ) ) |
155 |
154
|
rexbii |
|- ( E. xR e. ( _Right ` A ) E. t E. zL e. ( _Left ` C ) ( t = ( ( ( xR x.s C ) +s ( A x.s zL ) ) -s ( xR x.s zL ) ) /\ a = ( ( A x.s B ) +s t ) ) <-> E. xR e. ( _Right ` A ) E. zL e. ( _Left ` C ) a = ( ( A x.s B ) +s ( ( ( xR x.s C ) +s ( A x.s zL ) ) -s ( xR x.s zL ) ) ) ) |
156 |
|
r19.41vv |
|- ( E. xR e. ( _Right ` A ) E. zL e. ( _Left ` C ) ( t = ( ( ( xR x.s C ) +s ( A x.s zL ) ) -s ( xR x.s zL ) ) /\ a = ( ( A x.s B ) +s t ) ) <-> ( E. xR e. ( _Right ` A ) E. zL e. ( _Left ` C ) t = ( ( ( xR x.s C ) +s ( A x.s zL ) ) -s ( xR x.s zL ) ) /\ a = ( ( A x.s B ) +s t ) ) ) |
157 |
156
|
exbii |
|- ( E. t E. xR e. ( _Right ` A ) E. zL e. ( _Left ` C ) ( t = ( ( ( xR x.s C ) +s ( A x.s zL ) ) -s ( xR x.s zL ) ) /\ a = ( ( A x.s B ) +s t ) ) <-> E. t ( E. xR e. ( _Right ` A ) E. zL e. ( _Left ` C ) t = ( ( ( xR x.s C ) +s ( A x.s zL ) ) -s ( xR x.s zL ) ) /\ a = ( ( A x.s B ) +s t ) ) ) |
158 |
147 155 157
|
3bitr3ri |
|- ( E. t ( E. xR e. ( _Right ` A ) E. zL e. ( _Left ` C ) t = ( ( ( xR x.s C ) +s ( A x.s zL ) ) -s ( xR x.s zL ) ) /\ a = ( ( A x.s B ) +s t ) ) <-> E. xR e. ( _Right ` A ) E. zL e. ( _Left ` C ) a = ( ( A x.s B ) +s ( ( ( xR x.s C ) +s ( A x.s zL ) ) -s ( xR x.s zL ) ) ) ) |
159 |
146 158
|
bitri |
|- ( E. t e. { b | E. xR e. ( _Right ` A ) E. zL e. ( _Left ` C ) b = ( ( ( xR x.s C ) +s ( A x.s zL ) ) -s ( xR x.s zL ) ) } a = ( ( A x.s B ) +s t ) <-> E. xR e. ( _Right ` A ) E. zL e. ( _Left ` C ) a = ( ( A x.s B ) +s ( ( ( xR x.s C ) +s ( A x.s zL ) ) -s ( xR x.s zL ) ) ) ) |
160 |
143 159
|
orbi12i |
|- ( ( E. t e. { b | E. xL e. ( _Left ` A ) E. zR e. ( _Right ` C ) b = ( ( ( xL x.s C ) +s ( A x.s zR ) ) -s ( xL x.s zR ) ) } a = ( ( A x.s B ) +s t ) \/ E. t e. { b | E. xR e. ( _Right ` A ) E. zL e. ( _Left ` C ) b = ( ( ( xR x.s C ) +s ( A x.s zL ) ) -s ( xR x.s zL ) ) } a = ( ( A x.s B ) +s t ) ) <-> ( E. xL e. ( _Left ` A ) E. zR e. ( _Right ` C ) a = ( ( A x.s B ) +s ( ( ( xL x.s C ) +s ( A x.s zR ) ) -s ( xL x.s zR ) ) ) \/ E. xR e. ( _Right ` A ) E. zL e. ( _Left ` C ) a = ( ( A x.s B ) +s ( ( ( xR x.s C ) +s ( A x.s zL ) ) -s ( xR x.s zL ) ) ) ) ) |
161 |
127 160
|
bitr2i |
|- ( ( E. xL e. ( _Left ` A ) E. zR e. ( _Right ` C ) a = ( ( A x.s B ) +s ( ( ( xL x.s C ) +s ( A x.s zR ) ) -s ( xL x.s zR ) ) ) \/ E. xR e. ( _Right ` A ) E. zL e. ( _Left ` C ) a = ( ( A x.s B ) +s ( ( ( xR x.s C ) +s ( A x.s zL ) ) -s ( xR x.s zL ) ) ) ) <-> E. t e. ( { b | E. xL e. ( _Left ` A ) E. zR e. ( _Right ` C ) b = ( ( ( xL x.s C ) +s ( A x.s zR ) ) -s ( xL x.s zR ) ) } u. { b | E. xR e. ( _Right ` A ) E. zL e. ( _Left ` C ) b = ( ( ( xR x.s C ) +s ( A x.s zL ) ) -s ( xR x.s zL ) ) } ) a = ( ( A x.s B ) +s t ) ) |
162 |
161
|
abbii |
|- { a | ( E. xL e. ( _Left ` A ) E. zR e. ( _Right ` C ) a = ( ( A x.s B ) +s ( ( ( xL x.s C ) +s ( A x.s zR ) ) -s ( xL x.s zR ) ) ) \/ E. xR e. ( _Right ` A ) E. zL e. ( _Left ` C ) a = ( ( A x.s B ) +s ( ( ( xR x.s C ) +s ( A x.s zL ) ) -s ( xR x.s zL ) ) ) ) } = { a | E. t e. ( { b | E. xL e. ( _Left ` A ) E. zR e. ( _Right ` C ) b = ( ( ( xL x.s C ) +s ( A x.s zR ) ) -s ( xL x.s zR ) ) } u. { b | E. xR e. ( _Right ` A ) E. zL e. ( _Left ` C ) b = ( ( ( xR x.s C ) +s ( A x.s zL ) ) -s ( xR x.s zL ) ) } ) a = ( ( A x.s B ) +s t ) } |
163 |
126 162
|
eqtri |
|- ( { a | E. xL e. ( _Left ` A ) E. zR e. ( _Right ` C ) a = ( ( A x.s B ) +s ( ( ( xL x.s C ) +s ( A x.s zR ) ) -s ( xL x.s zR ) ) ) } u. { a | E. xR e. ( _Right ` A ) E. zL e. ( _Left ` C ) a = ( ( A x.s B ) +s ( ( ( xR x.s C ) +s ( A x.s zL ) ) -s ( xR x.s zL ) ) ) } ) = { a | E. t e. ( { b | E. xL e. ( _Left ` A ) E. zR e. ( _Right ` C ) b = ( ( ( xL x.s C ) +s ( A x.s zR ) ) -s ( xL x.s zR ) ) } u. { b | E. xR e. ( _Right ` A ) E. zL e. ( _Left ` C ) b = ( ( ( xR x.s C ) +s ( A x.s zL ) ) -s ( xR x.s zL ) ) } ) a = ( ( A x.s B ) +s t ) } |
164 |
125 163
|
uneq12i |
|- ( ( { a | E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) a = ( ( ( ( xL x.s B ) +s ( A x.s yR ) ) -s ( xL x.s yR ) ) +s ( A x.s C ) ) } u. { a | E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) a = ( ( ( ( xR x.s B ) +s ( A x.s yL ) ) -s ( xR x.s yL ) ) +s ( A x.s C ) ) } ) u. ( { a | E. xL e. ( _Left ` A ) E. zR e. ( _Right ` C ) a = ( ( A x.s B ) +s ( ( ( xL x.s C ) +s ( A x.s zR ) ) -s ( xL x.s zR ) ) ) } u. { a | E. xR e. ( _Right ` A ) E. zL e. ( _Left ` C ) a = ( ( A x.s B ) +s ( ( ( xR x.s C ) +s ( A x.s zL ) ) -s ( xR x.s zL ) ) ) } ) ) = ( { a | E. t e. ( { b | E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) b = ( ( ( xL x.s B ) +s ( A x.s yR ) ) -s ( xL x.s yR ) ) } u. { b | E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) b = ( ( ( xR x.s B ) +s ( A x.s yL ) ) -s ( xR x.s yL ) ) } ) a = ( t +s ( A x.s C ) ) } u. { a | E. t e. ( { b | E. xL e. ( _Left ` A ) E. zR e. ( _Right ` C ) b = ( ( ( xL x.s C ) +s ( A x.s zR ) ) -s ( xL x.s zR ) ) } u. { b | E. xR e. ( _Right ` A ) E. zL e. ( _Left ` C ) b = ( ( ( xR x.s C ) +s ( A x.s zL ) ) -s ( xR x.s zL ) ) } ) a = ( ( A x.s B ) +s t ) } ) |
165 |
87 164
|
oveq12i |
|- ( ( ( { a | E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) a = ( ( ( ( xL x.s B ) +s ( A x.s yL ) ) -s ( xL x.s yL ) ) +s ( A x.s C ) ) } u. { a | E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) a = ( ( ( ( xR x.s B ) +s ( A x.s yR ) ) -s ( xR x.s yR ) ) +s ( A x.s C ) ) } ) u. ( { a | E. xL e. ( _Left ` A ) E. zL e. ( _Left ` C ) a = ( ( A x.s B ) +s ( ( ( xL x.s C ) +s ( A x.s zL ) ) -s ( xL x.s zL ) ) ) } u. { a | E. xR e. ( _Right ` A ) E. zR e. ( _Right ` C ) a = ( ( A x.s B ) +s ( ( ( xR x.s C ) +s ( A x.s zR ) ) -s ( xR x.s zR ) ) ) } ) ) |s ( ( { a | E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) a = ( ( ( ( xL x.s B ) +s ( A x.s yR ) ) -s ( xL x.s yR ) ) +s ( A x.s C ) ) } u. { a | E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) a = ( ( ( ( xR x.s B ) +s ( A x.s yL ) ) -s ( xR x.s yL ) ) +s ( A x.s C ) ) } ) u. ( { a | E. xL e. ( _Left ` A ) E. zR e. ( _Right ` C ) a = ( ( A x.s B ) +s ( ( ( xL x.s C ) +s ( A x.s zR ) ) -s ( xL x.s zR ) ) ) } u. { a | E. xR e. ( _Right ` A ) E. zL e. ( _Left ` C ) a = ( ( A x.s B ) +s ( ( ( xR x.s C ) +s ( A x.s zL ) ) -s ( xR x.s zL ) ) ) } ) ) ) = ( ( { a | E. t e. ( { b | E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) b = ( ( ( xL x.s B ) +s ( A x.s yL ) ) -s ( xL x.s yL ) ) } u. { b | E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) b = ( ( ( xR x.s B ) +s ( A x.s yR ) ) -s ( xR x.s yR ) ) } ) a = ( t +s ( A x.s C ) ) } u. { a | E. t e. ( { b | E. xL e. ( _Left ` A ) E. zL e. ( _Left ` C ) b = ( ( ( xL x.s C ) +s ( A x.s zL ) ) -s ( xL x.s zL ) ) } u. { b | E. xR e. ( _Right ` A ) E. zR e. ( _Right ` C ) b = ( ( ( xR x.s C ) +s ( A x.s zR ) ) -s ( xR x.s zR ) ) } ) a = ( ( A x.s B ) +s t ) } ) |s ( { a | E. t e. ( { b | E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) b = ( ( ( xL x.s B ) +s ( A x.s yR ) ) -s ( xL x.s yR ) ) } u. { b | E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) b = ( ( ( xR x.s B ) +s ( A x.s yL ) ) -s ( xR x.s yL ) ) } ) a = ( t +s ( A x.s C ) ) } u. { a | E. t e. ( { b | E. xL e. ( _Left ` A ) E. zR e. ( _Right ` C ) b = ( ( ( xL x.s C ) +s ( A x.s zR ) ) -s ( xL x.s zR ) ) } u. { b | E. xR e. ( _Right ` A ) E. zL e. ( _Left ` C ) b = ( ( ( xR x.s C ) +s ( A x.s zL ) ) -s ( xR x.s zL ) ) } ) a = ( ( A x.s B ) +s t ) } ) ) |
166 |
10 165
|
eqtr4di |
|- ( ph -> ( ( A x.s B ) +s ( A x.s C ) ) = ( ( ( { a | E. xL e. ( _Left ` A ) E. yL e. ( _Left ` B ) a = ( ( ( ( xL x.s B ) +s ( A x.s yL ) ) -s ( xL x.s yL ) ) +s ( A x.s C ) ) } u. { a | E. xR e. ( _Right ` A ) E. yR e. ( _Right ` B ) a = ( ( ( ( xR x.s B ) +s ( A x.s yR ) ) -s ( xR x.s yR ) ) +s ( A x.s C ) ) } ) u. ( { a | E. xL e. ( _Left ` A ) E. zL e. ( _Left ` C ) a = ( ( A x.s B ) +s ( ( ( xL x.s C ) +s ( A x.s zL ) ) -s ( xL x.s zL ) ) ) } u. { a | E. xR e. ( _Right ` A ) E. zR e. ( _Right ` C ) a = ( ( A x.s B ) +s ( ( ( xR x.s C ) +s ( A x.s zR ) ) -s ( xR x.s zR ) ) ) } ) ) |s ( ( { a | E. xL e. ( _Left ` A ) E. yR e. ( _Right ` B ) a = ( ( ( ( xL x.s B ) +s ( A x.s yR ) ) -s ( xL x.s yR ) ) +s ( A x.s C ) ) } u. { a | E. xR e. ( _Right ` A ) E. yL e. ( _Left ` B ) a = ( ( ( ( xR x.s B ) +s ( A x.s yL ) ) -s ( xR x.s yL ) ) +s ( A x.s C ) ) } ) u. ( { a | E. xL e. ( _Left ` A ) E. zR e. ( _Right ` C ) a = ( ( A x.s B ) +s ( ( ( xL x.s C ) +s ( A x.s zR ) ) -s ( xL x.s zR ) ) ) } u. { a | E. xR e. ( _Right ` A ) E. zL e. ( _Left ` C ) a = ( ( A x.s B ) +s ( ( ( xR x.s C ) +s ( A x.s zL ) ) -s ( xR x.s zL ) ) ) } ) ) ) ) |