Description: Surreal addition to zero is identity. (Contributed by Scott Fenton, 3-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addslid | |- ( A e. No -> ( 0s +s A ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | |- ( A e. No -> A e. No ) |
|
| 2 | 0sno | |- 0s e. No |
|
| 3 | 2 | a1i | |- ( A e. No -> 0s e. No ) |
| 4 | 1 3 | addscomd | |- ( A e. No -> ( A +s 0s ) = ( 0s +s A ) ) |
| 5 | addsrid | |- ( A e. No -> ( A +s 0s ) = A ) |
|
| 6 | 4 5 | eqtr3d | |- ( A e. No -> ( 0s +s A ) = A ) |