Metamath Proof Explorer


Theorem addsproplem1

Description: Lemma for surreal addition properties. To prove closure on surreal addition we need to prove that addition is compatible with order at the same time. We do this by inducting over the maximum of two natural sums of the birthdays of surreals numbers. In the final step we will loop around and use tfr3 to prove this of all surreals. This first lemma just instantiates the inductive hypothesis so we do not need to do it continuously throughout the proof. (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Hypotheses addsproplem.1
|- ( ph -> A. x e. No A. y e. No A. z e. No ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( x +s y ) e. No /\ ( y  ( y +s x ) 
addsproplem1.2
|- ( ph -> A e. No )
addsproplem1.3
|- ( ph -> B e. No )
addsproplem1.4
|- ( ph -> C e. No )
addsproplem1.5
|- ( ph -> ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` C ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) )
Assertion addsproplem1
|- ( ph -> ( ( A +s B ) e. No /\ ( B  ( B +s A ) 

Proof

Step Hyp Ref Expression
1 addsproplem.1
 |-  ( ph -> A. x e. No A. y e. No A. z e. No ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( x +s y ) e. No /\ ( y  ( y +s x ) 
2 addsproplem1.2
 |-  ( ph -> A e. No )
3 addsproplem1.3
 |-  ( ph -> B e. No )
4 addsproplem1.4
 |-  ( ph -> C e. No )
5 addsproplem1.5
 |-  ( ph -> ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` C ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) )
6 2 3 4 3jca
 |-  ( ph -> ( A e. No /\ B e. No /\ C e. No ) )
7 fveq2
 |-  ( x = A -> ( bday ` x ) = ( bday ` A ) )
8 7 oveq1d
 |-  ( x = A -> ( ( bday ` x ) +no ( bday ` y ) ) = ( ( bday ` A ) +no ( bday ` y ) ) )
9 7 oveq1d
 |-  ( x = A -> ( ( bday ` x ) +no ( bday ` z ) ) = ( ( bday ` A ) +no ( bday ` z ) ) )
10 8 9 uneq12d
 |-  ( x = A -> ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) = ( ( ( bday ` A ) +no ( bday ` y ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) )
11 10 eleq1d
 |-  ( x = A -> ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) <-> ( ( ( bday ` A ) +no ( bday ` y ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) ) )
12 oveq1
 |-  ( x = A -> ( x +s y ) = ( A +s y ) )
13 12 eleq1d
 |-  ( x = A -> ( ( x +s y ) e. No <-> ( A +s y ) e. No ) )
14 oveq2
 |-  ( x = A -> ( y +s x ) = ( y +s A ) )
15 oveq2
 |-  ( x = A -> ( z +s x ) = ( z +s A ) )
16 14 15 breq12d
 |-  ( x = A -> ( ( y +s x )  ( y +s A ) 
17 16 imbi2d
 |-  ( x = A -> ( ( y  ( y +s x )  ( y  ( y +s A ) 
18 13 17 anbi12d
 |-  ( x = A -> ( ( ( x +s y ) e. No /\ ( y  ( y +s x )  ( ( A +s y ) e. No /\ ( y  ( y +s A ) 
19 11 18 imbi12d
 |-  ( x = A -> ( ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( x +s y ) e. No /\ ( y  ( y +s x )  ( ( ( ( bday ` A ) +no ( bday ` y ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( A +s y ) e. No /\ ( y  ( y +s A ) 
20 fveq2
 |-  ( y = B -> ( bday ` y ) = ( bday ` B ) )
21 20 oveq2d
 |-  ( y = B -> ( ( bday ` A ) +no ( bday ` y ) ) = ( ( bday ` A ) +no ( bday ` B ) ) )
22 21 uneq1d
 |-  ( y = B -> ( ( ( bday ` A ) +no ( bday ` y ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) = ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) )
23 22 eleq1d
 |-  ( y = B -> ( ( ( ( bday ` A ) +no ( bday ` y ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) <-> ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) ) )
24 oveq2
 |-  ( y = B -> ( A +s y ) = ( A +s B ) )
25 24 eleq1d
 |-  ( y = B -> ( ( A +s y ) e. No <-> ( A +s B ) e. No ) )
26 breq1
 |-  ( y = B -> ( y  B 
27 oveq1
 |-  ( y = B -> ( y +s A ) = ( B +s A ) )
28 27 breq1d
 |-  ( y = B -> ( ( y +s A )  ( B +s A ) 
29 26 28 imbi12d
 |-  ( y = B -> ( ( y  ( y +s A )  ( B  ( B +s A ) 
30 25 29 anbi12d
 |-  ( y = B -> ( ( ( A +s y ) e. No /\ ( y  ( y +s A )  ( ( A +s B ) e. No /\ ( B  ( B +s A ) 
31 23 30 imbi12d
 |-  ( y = B -> ( ( ( ( ( bday ` A ) +no ( bday ` y ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( A +s y ) e. No /\ ( y  ( y +s A )  ( ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( A +s B ) e. No /\ ( B  ( B +s A ) 
32 fveq2
 |-  ( z = C -> ( bday ` z ) = ( bday ` C ) )
33 32 oveq2d
 |-  ( z = C -> ( ( bday ` A ) +no ( bday ` z ) ) = ( ( bday ` A ) +no ( bday ` C ) ) )
34 33 uneq2d
 |-  ( z = C -> ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) = ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` C ) ) ) )
35 34 eleq1d
 |-  ( z = C -> ( ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) <-> ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` C ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) ) )
36 breq2
 |-  ( z = C -> ( B  B 
37 oveq1
 |-  ( z = C -> ( z +s A ) = ( C +s A ) )
38 37 breq2d
 |-  ( z = C -> ( ( B +s A )  ( B +s A ) 
39 36 38 imbi12d
 |-  ( z = C -> ( ( B  ( B +s A )  ( B  ( B +s A ) 
40 39 anbi2d
 |-  ( z = C -> ( ( ( A +s B ) e. No /\ ( B  ( B +s A )  ( ( A +s B ) e. No /\ ( B  ( B +s A ) 
41 35 40 imbi12d
 |-  ( z = C -> ( ( ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( A +s B ) e. No /\ ( B  ( B +s A )  ( ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` C ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( A +s B ) e. No /\ ( B  ( B +s A ) 
42 19 31 41 rspc3v
 |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( A. x e. No A. y e. No A. z e. No ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( x +s y ) e. No /\ ( y  ( y +s x )  ( ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` C ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( A +s B ) e. No /\ ( B  ( B +s A ) 
43 6 1 5 42 syl3c
 |-  ( ph -> ( ( A +s B ) e. No /\ ( B  ( B +s A )