Step |
Hyp |
Ref |
Expression |
1 |
|
addsproplem.1 |
|- ( ph -> A. x e. No A. y e. No A. z e. No ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( x +s y ) e. No /\ ( y ( y +s x ) |
2 |
|
addsproplem1.2 |
|- ( ph -> A e. No ) |
3 |
|
addsproplem1.3 |
|- ( ph -> B e. No ) |
4 |
|
addsproplem1.4 |
|- ( ph -> C e. No ) |
5 |
|
addsproplem1.5 |
|- ( ph -> ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` C ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) ) |
6 |
2 3 4
|
3jca |
|- ( ph -> ( A e. No /\ B e. No /\ C e. No ) ) |
7 |
|
fveq2 |
|- ( x = A -> ( bday ` x ) = ( bday ` A ) ) |
8 |
7
|
oveq1d |
|- ( x = A -> ( ( bday ` x ) +no ( bday ` y ) ) = ( ( bday ` A ) +no ( bday ` y ) ) ) |
9 |
7
|
oveq1d |
|- ( x = A -> ( ( bday ` x ) +no ( bday ` z ) ) = ( ( bday ` A ) +no ( bday ` z ) ) ) |
10 |
8 9
|
uneq12d |
|- ( x = A -> ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) = ( ( ( bday ` A ) +no ( bday ` y ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) ) |
11 |
10
|
eleq1d |
|- ( x = A -> ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) <-> ( ( ( bday ` A ) +no ( bday ` y ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) ) ) |
12 |
|
oveq1 |
|- ( x = A -> ( x +s y ) = ( A +s y ) ) |
13 |
12
|
eleq1d |
|- ( x = A -> ( ( x +s y ) e. No <-> ( A +s y ) e. No ) ) |
14 |
|
oveq2 |
|- ( x = A -> ( y +s x ) = ( y +s A ) ) |
15 |
|
oveq2 |
|- ( x = A -> ( z +s x ) = ( z +s A ) ) |
16 |
14 15
|
breq12d |
|- ( x = A -> ( ( y +s x ) ( y +s A ) |
17 |
16
|
imbi2d |
|- ( x = A -> ( ( y ( y +s x ) ( y ( y +s A ) |
18 |
13 17
|
anbi12d |
|- ( x = A -> ( ( ( x +s y ) e. No /\ ( y ( y +s x ) ( ( A +s y ) e. No /\ ( y ( y +s A ) |
19 |
11 18
|
imbi12d |
|- ( x = A -> ( ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( x +s y ) e. No /\ ( y ( y +s x ) ( ( ( ( bday ` A ) +no ( bday ` y ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( A +s y ) e. No /\ ( y ( y +s A ) |
20 |
|
fveq2 |
|- ( y = B -> ( bday ` y ) = ( bday ` B ) ) |
21 |
20
|
oveq2d |
|- ( y = B -> ( ( bday ` A ) +no ( bday ` y ) ) = ( ( bday ` A ) +no ( bday ` B ) ) ) |
22 |
21
|
uneq1d |
|- ( y = B -> ( ( ( bday ` A ) +no ( bday ` y ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) = ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) ) |
23 |
22
|
eleq1d |
|- ( y = B -> ( ( ( ( bday ` A ) +no ( bday ` y ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) <-> ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) ) ) |
24 |
|
oveq2 |
|- ( y = B -> ( A +s y ) = ( A +s B ) ) |
25 |
24
|
eleq1d |
|- ( y = B -> ( ( A +s y ) e. No <-> ( A +s B ) e. No ) ) |
26 |
|
breq1 |
|- ( y = B -> ( y B |
27 |
|
oveq1 |
|- ( y = B -> ( y +s A ) = ( B +s A ) ) |
28 |
27
|
breq1d |
|- ( y = B -> ( ( y +s A ) ( B +s A ) |
29 |
26 28
|
imbi12d |
|- ( y = B -> ( ( y ( y +s A ) ( B ( B +s A ) |
30 |
25 29
|
anbi12d |
|- ( y = B -> ( ( ( A +s y ) e. No /\ ( y ( y +s A ) ( ( A +s B ) e. No /\ ( B ( B +s A ) |
31 |
23 30
|
imbi12d |
|- ( y = B -> ( ( ( ( ( bday ` A ) +no ( bday ` y ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( A +s y ) e. No /\ ( y ( y +s A ) ( ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( A +s B ) e. No /\ ( B ( B +s A ) |
32 |
|
fveq2 |
|- ( z = C -> ( bday ` z ) = ( bday ` C ) ) |
33 |
32
|
oveq2d |
|- ( z = C -> ( ( bday ` A ) +no ( bday ` z ) ) = ( ( bday ` A ) +no ( bday ` C ) ) ) |
34 |
33
|
uneq2d |
|- ( z = C -> ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) = ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` C ) ) ) ) |
35 |
34
|
eleq1d |
|- ( z = C -> ( ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) <-> ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` C ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) ) ) |
36 |
|
breq2 |
|- ( z = C -> ( B B |
37 |
|
oveq1 |
|- ( z = C -> ( z +s A ) = ( C +s A ) ) |
38 |
37
|
breq2d |
|- ( z = C -> ( ( B +s A ) ( B +s A ) |
39 |
36 38
|
imbi12d |
|- ( z = C -> ( ( B ( B +s A ) ( B ( B +s A ) |
40 |
39
|
anbi2d |
|- ( z = C -> ( ( ( A +s B ) e. No /\ ( B ( B +s A ) ( ( A +s B ) e. No /\ ( B ( B +s A ) |
41 |
35 40
|
imbi12d |
|- ( z = C -> ( ( ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( A +s B ) e. No /\ ( B ( B +s A ) ( ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` C ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( A +s B ) e. No /\ ( B ( B +s A ) |
42 |
19 31 41
|
rspc3v |
|- ( ( A e. No /\ B e. No /\ C e. No ) -> ( A. x e. No A. y e. No A. z e. No ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( x +s y ) e. No /\ ( y ( y +s x ) ( ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` C ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( A +s B ) e. No /\ ( B ( B +s A ) |
43 |
6 1 5 42
|
syl3c |
|- ( ph -> ( ( A +s B ) e. No /\ ( B ( B +s A ) |