Metamath Proof Explorer


Theorem addsproplem3

Description: Lemma for surreal addition properties. Show the cut properties of surreal addition. (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Hypotheses addsproplem.1
|- ( ph -> A. x e. No A. y e. No A. z e. No ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( x +s y ) e. No /\ ( y  ( y +s x ) 
addsproplem2.2
|- ( ph -> X e. No )
addsproplem2.3
|- ( ph -> Y e. No )
Assertion addsproplem3
|- ( ph -> ( ( X +s Y ) e. No /\ ( { p | E. l e. ( _Left ` X ) p = ( l +s Y ) } u. { q | E. m e. ( _Left ` Y ) q = ( X +s m ) } ) <

Proof

Step Hyp Ref Expression
1 addsproplem.1
 |-  ( ph -> A. x e. No A. y e. No A. z e. No ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( x +s y ) e. No /\ ( y  ( y +s x ) 
2 addsproplem2.2
 |-  ( ph -> X e. No )
3 addsproplem2.3
 |-  ( ph -> Y e. No )
4 1 2 3 addsproplem2
 |-  ( ph -> ( { p | E. l e. ( _Left ` X ) p = ( l +s Y ) } u. { q | E. m e. ( _Left ` Y ) q = ( X +s m ) } ) <
5 scutcut
 |-  ( ( { p | E. l e. ( _Left ` X ) p = ( l +s Y ) } u. { q | E. m e. ( _Left ` Y ) q = ( X +s m ) } ) < ( ( ( { p | E. l e. ( _Left ` X ) p = ( l +s Y ) } u. { q | E. m e. ( _Left ` Y ) q = ( X +s m ) } ) |s ( { w | E. r e. ( _Right ` X ) w = ( r +s Y ) } u. { t | E. s e. ( _Right ` Y ) t = ( X +s s ) } ) ) e. No /\ ( { p | E. l e. ( _Left ` X ) p = ( l +s Y ) } u. { q | E. m e. ( _Left ` Y ) q = ( X +s m ) } ) <
6 4 5 syl
 |-  ( ph -> ( ( ( { p | E. l e. ( _Left ` X ) p = ( l +s Y ) } u. { q | E. m e. ( _Left ` Y ) q = ( X +s m ) } ) |s ( { w | E. r e. ( _Right ` X ) w = ( r +s Y ) } u. { t | E. s e. ( _Right ` Y ) t = ( X +s s ) } ) ) e. No /\ ( { p | E. l e. ( _Left ` X ) p = ( l +s Y ) } u. { q | E. m e. ( _Left ` Y ) q = ( X +s m ) } ) <
7 addsval2
 |-  ( ( X e. No /\ Y e. No ) -> ( X +s Y ) = ( ( { p | E. l e. ( _Left ` X ) p = ( l +s Y ) } u. { q | E. m e. ( _Left ` Y ) q = ( X +s m ) } ) |s ( { w | E. r e. ( _Right ` X ) w = ( r +s Y ) } u. { t | E. s e. ( _Right ` Y ) t = ( X +s s ) } ) ) )
8 2 3 7 syl2anc
 |-  ( ph -> ( X +s Y ) = ( ( { p | E. l e. ( _Left ` X ) p = ( l +s Y ) } u. { q | E. m e. ( _Left ` Y ) q = ( X +s m ) } ) |s ( { w | E. r e. ( _Right ` X ) w = ( r +s Y ) } u. { t | E. s e. ( _Right ` Y ) t = ( X +s s ) } ) ) )
9 8 eleq1d
 |-  ( ph -> ( ( X +s Y ) e. No <-> ( ( { p | E. l e. ( _Left ` X ) p = ( l +s Y ) } u. { q | E. m e. ( _Left ` Y ) q = ( X +s m ) } ) |s ( { w | E. r e. ( _Right ` X ) w = ( r +s Y ) } u. { t | E. s e. ( _Right ` Y ) t = ( X +s s ) } ) ) e. No ) )
10 8 sneqd
 |-  ( ph -> { ( X +s Y ) } = { ( ( { p | E. l e. ( _Left ` X ) p = ( l +s Y ) } u. { q | E. m e. ( _Left ` Y ) q = ( X +s m ) } ) |s ( { w | E. r e. ( _Right ` X ) w = ( r +s Y ) } u. { t | E. s e. ( _Right ` Y ) t = ( X +s s ) } ) ) } )
11 10 breq2d
 |-  ( ph -> ( ( { p | E. l e. ( _Left ` X ) p = ( l +s Y ) } u. { q | E. m e. ( _Left ` Y ) q = ( X +s m ) } ) < ( { p | E. l e. ( _Left ` X ) p = ( l +s Y ) } u. { q | E. m e. ( _Left ` Y ) q = ( X +s m ) } ) <
12 10 breq1d
 |-  ( ph -> ( { ( X +s Y ) } < { ( ( { p | E. l e. ( _Left ` X ) p = ( l +s Y ) } u. { q | E. m e. ( _Left ` Y ) q = ( X +s m ) } ) |s ( { w | E. r e. ( _Right ` X ) w = ( r +s Y ) } u. { t | E. s e. ( _Right ` Y ) t = ( X +s s ) } ) ) } <
13 9 11 12 3anbi123d
 |-  ( ph -> ( ( ( X +s Y ) e. No /\ ( { p | E. l e. ( _Left ` X ) p = ( l +s Y ) } u. { q | E. m e. ( _Left ` Y ) q = ( X +s m ) } ) < ( ( ( { p | E. l e. ( _Left ` X ) p = ( l +s Y ) } u. { q | E. m e. ( _Left ` Y ) q = ( X +s m ) } ) |s ( { w | E. r e. ( _Right ` X ) w = ( r +s Y ) } u. { t | E. s e. ( _Right ` Y ) t = ( X +s s ) } ) ) e. No /\ ( { p | E. l e. ( _Left ` X ) p = ( l +s Y ) } u. { q | E. m e. ( _Left ` Y ) q = ( X +s m ) } ) <
14 6 13 mpbird
 |-  ( ph -> ( ( X +s Y ) e. No /\ ( { p | E. l e. ( _Left ` X ) p = ( l +s Y ) } u. { q | E. m e. ( _Left ` Y ) q = ( X +s m ) } ) <