| Step |
Hyp |
Ref |
Expression |
| 1 |
|
addsproplem.1 |
|- ( ph -> A. x e. No A. y e. No A. z e. No ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( x +s y ) e. No /\ ( y ( y +s x ) |
| 2 |
|
addspropord.2 |
|- ( ph -> X e. No ) |
| 3 |
|
addspropord.3 |
|- ( ph -> Y e. No ) |
| 4 |
|
addspropord.4 |
|- ( ph -> Z e. No ) |
| 5 |
|
addspropord.5 |
|- ( ph -> Y |
| 6 |
|
bdayelon |
|- ( bday ` Y ) e. On |
| 7 |
|
fvex |
|- ( bday ` Y ) e. _V |
| 8 |
7
|
elon |
|- ( ( bday ` Y ) e. On <-> Ord ( bday ` Y ) ) |
| 9 |
6 8
|
mpbi |
|- Ord ( bday ` Y ) |
| 10 |
|
bdayelon |
|- ( bday ` Z ) e. On |
| 11 |
|
fvex |
|- ( bday ` Z ) e. _V |
| 12 |
11
|
elon |
|- ( ( bday ` Z ) e. On <-> Ord ( bday ` Z ) ) |
| 13 |
10 12
|
mpbi |
|- Ord ( bday ` Z ) |
| 14 |
|
ordtri3or |
|- ( ( Ord ( bday ` Y ) /\ Ord ( bday ` Z ) ) -> ( ( bday ` Y ) e. ( bday ` Z ) \/ ( bday ` Y ) = ( bday ` Z ) \/ ( bday ` Z ) e. ( bday ` Y ) ) ) |
| 15 |
9 13 14
|
mp2an |
|- ( ( bday ` Y ) e. ( bday ` Z ) \/ ( bday ` Y ) = ( bday ` Z ) \/ ( bday ` Z ) e. ( bday ` Y ) ) |
| 16 |
|
simpl |
|- ( ( ph /\ ( bday ` Y ) e. ( bday ` Z ) ) -> ph ) |
| 17 |
16 1
|
syl |
|- ( ( ph /\ ( bday ` Y ) e. ( bday ` Z ) ) -> A. x e. No A. y e. No A. z e. No ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( x +s y ) e. No /\ ( y ( y +s x ) |
| 18 |
16 2
|
syl |
|- ( ( ph /\ ( bday ` Y ) e. ( bday ` Z ) ) -> X e. No ) |
| 19 |
16 3
|
syl |
|- ( ( ph /\ ( bday ` Y ) e. ( bday ` Z ) ) -> Y e. No ) |
| 20 |
16 4
|
syl |
|- ( ( ph /\ ( bday ` Y ) e. ( bday ` Z ) ) -> Z e. No ) |
| 21 |
16 5
|
syl |
|- ( ( ph /\ ( bday ` Y ) e. ( bday ` Z ) ) -> Y |
| 22 |
|
simpr |
|- ( ( ph /\ ( bday ` Y ) e. ( bday ` Z ) ) -> ( bday ` Y ) e. ( bday ` Z ) ) |
| 23 |
17 18 19 20 21 22
|
addsproplem4 |
|- ( ( ph /\ ( bday ` Y ) e. ( bday ` Z ) ) -> ( Y +s X ) |
| 24 |
23
|
ex |
|- ( ph -> ( ( bday ` Y ) e. ( bday ` Z ) -> ( Y +s X ) |
| 25 |
|
simpl |
|- ( ( ph /\ ( bday ` Y ) = ( bday ` Z ) ) -> ph ) |
| 26 |
25 1
|
syl |
|- ( ( ph /\ ( bday ` Y ) = ( bday ` Z ) ) -> A. x e. No A. y e. No A. z e. No ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( x +s y ) e. No /\ ( y ( y +s x ) |
| 27 |
25 2
|
syl |
|- ( ( ph /\ ( bday ` Y ) = ( bday ` Z ) ) -> X e. No ) |
| 28 |
25 3
|
syl |
|- ( ( ph /\ ( bday ` Y ) = ( bday ` Z ) ) -> Y e. No ) |
| 29 |
25 4
|
syl |
|- ( ( ph /\ ( bday ` Y ) = ( bday ` Z ) ) -> Z e. No ) |
| 30 |
25 5
|
syl |
|- ( ( ph /\ ( bday ` Y ) = ( bday ` Z ) ) -> Y |
| 31 |
|
simpr |
|- ( ( ph /\ ( bday ` Y ) = ( bday ` Z ) ) -> ( bday ` Y ) = ( bday ` Z ) ) |
| 32 |
26 27 28 29 30 31
|
addsproplem6 |
|- ( ( ph /\ ( bday ` Y ) = ( bday ` Z ) ) -> ( Y +s X ) |
| 33 |
32
|
ex |
|- ( ph -> ( ( bday ` Y ) = ( bday ` Z ) -> ( Y +s X ) |
| 34 |
1
|
adantr |
|- ( ( ph /\ ( bday ` Z ) e. ( bday ` Y ) ) -> A. x e. No A. y e. No A. z e. No ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( x +s y ) e. No /\ ( y ( y +s x ) |
| 35 |
2
|
adantr |
|- ( ( ph /\ ( bday ` Z ) e. ( bday ` Y ) ) -> X e. No ) |
| 36 |
3
|
adantr |
|- ( ( ph /\ ( bday ` Z ) e. ( bday ` Y ) ) -> Y e. No ) |
| 37 |
4
|
adantr |
|- ( ( ph /\ ( bday ` Z ) e. ( bday ` Y ) ) -> Z e. No ) |
| 38 |
5
|
adantr |
|- ( ( ph /\ ( bday ` Z ) e. ( bday ` Y ) ) -> Y |
| 39 |
|
simpr |
|- ( ( ph /\ ( bday ` Z ) e. ( bday ` Y ) ) -> ( bday ` Z ) e. ( bday ` Y ) ) |
| 40 |
34 35 36 37 38 39
|
addsproplem5 |
|- ( ( ph /\ ( bday ` Z ) e. ( bday ` Y ) ) -> ( Y +s X ) |
| 41 |
40
|
ex |
|- ( ph -> ( ( bday ` Z ) e. ( bday ` Y ) -> ( Y +s X ) |
| 42 |
24 33 41
|
3jaod |
|- ( ph -> ( ( ( bday ` Y ) e. ( bday ` Z ) \/ ( bday ` Y ) = ( bday ` Z ) \/ ( bday ` Z ) e. ( bday ` Y ) ) -> ( Y +s X ) |
| 43 |
15 42
|
mpi |
|- ( ph -> ( Y +s X ) |