Step |
Hyp |
Ref |
Expression |
1 |
|
addsproplem.1 |
|- ( ph -> A. x e. No A. y e. No A. z e. No ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( x +s y ) e. No /\ ( y ( y +s x ) |
2 |
|
addspropord.2 |
|- ( ph -> X e. No ) |
3 |
|
addspropord.3 |
|- ( ph -> Y e. No ) |
4 |
|
addspropord.4 |
|- ( ph -> Z e. No ) |
5 |
|
addspropord.5 |
|- ( ph -> Y |
6 |
|
bdayelon |
|- ( bday ` Y ) e. On |
7 |
|
fvex |
|- ( bday ` Y ) e. _V |
8 |
7
|
elon |
|- ( ( bday ` Y ) e. On <-> Ord ( bday ` Y ) ) |
9 |
6 8
|
mpbi |
|- Ord ( bday ` Y ) |
10 |
|
bdayelon |
|- ( bday ` Z ) e. On |
11 |
|
fvex |
|- ( bday ` Z ) e. _V |
12 |
11
|
elon |
|- ( ( bday ` Z ) e. On <-> Ord ( bday ` Z ) ) |
13 |
10 12
|
mpbi |
|- Ord ( bday ` Z ) |
14 |
|
ordtri3or |
|- ( ( Ord ( bday ` Y ) /\ Ord ( bday ` Z ) ) -> ( ( bday ` Y ) e. ( bday ` Z ) \/ ( bday ` Y ) = ( bday ` Z ) \/ ( bday ` Z ) e. ( bday ` Y ) ) ) |
15 |
9 13 14
|
mp2an |
|- ( ( bday ` Y ) e. ( bday ` Z ) \/ ( bday ` Y ) = ( bday ` Z ) \/ ( bday ` Z ) e. ( bday ` Y ) ) |
16 |
|
simpl |
|- ( ( ph /\ ( bday ` Y ) e. ( bday ` Z ) ) -> ph ) |
17 |
16 1
|
syl |
|- ( ( ph /\ ( bday ` Y ) e. ( bday ` Z ) ) -> A. x e. No A. y e. No A. z e. No ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( x +s y ) e. No /\ ( y ( y +s x ) |
18 |
16 2
|
syl |
|- ( ( ph /\ ( bday ` Y ) e. ( bday ` Z ) ) -> X e. No ) |
19 |
16 3
|
syl |
|- ( ( ph /\ ( bday ` Y ) e. ( bday ` Z ) ) -> Y e. No ) |
20 |
16 4
|
syl |
|- ( ( ph /\ ( bday ` Y ) e. ( bday ` Z ) ) -> Z e. No ) |
21 |
16 5
|
syl |
|- ( ( ph /\ ( bday ` Y ) e. ( bday ` Z ) ) -> Y |
22 |
|
simpr |
|- ( ( ph /\ ( bday ` Y ) e. ( bday ` Z ) ) -> ( bday ` Y ) e. ( bday ` Z ) ) |
23 |
17 18 19 20 21 22
|
addsproplem4 |
|- ( ( ph /\ ( bday ` Y ) e. ( bday ` Z ) ) -> ( Y +s X ) |
24 |
23
|
ex |
|- ( ph -> ( ( bday ` Y ) e. ( bday ` Z ) -> ( Y +s X ) |
25 |
|
simpl |
|- ( ( ph /\ ( bday ` Y ) = ( bday ` Z ) ) -> ph ) |
26 |
25 1
|
syl |
|- ( ( ph /\ ( bday ` Y ) = ( bday ` Z ) ) -> A. x e. No A. y e. No A. z e. No ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( x +s y ) e. No /\ ( y ( y +s x ) |
27 |
25 2
|
syl |
|- ( ( ph /\ ( bday ` Y ) = ( bday ` Z ) ) -> X e. No ) |
28 |
25 3
|
syl |
|- ( ( ph /\ ( bday ` Y ) = ( bday ` Z ) ) -> Y e. No ) |
29 |
25 4
|
syl |
|- ( ( ph /\ ( bday ` Y ) = ( bday ` Z ) ) -> Z e. No ) |
30 |
25 5
|
syl |
|- ( ( ph /\ ( bday ` Y ) = ( bday ` Z ) ) -> Y |
31 |
|
simpr |
|- ( ( ph /\ ( bday ` Y ) = ( bday ` Z ) ) -> ( bday ` Y ) = ( bday ` Z ) ) |
32 |
26 27 28 29 30 31
|
addsproplem6 |
|- ( ( ph /\ ( bday ` Y ) = ( bday ` Z ) ) -> ( Y +s X ) |
33 |
32
|
ex |
|- ( ph -> ( ( bday ` Y ) = ( bday ` Z ) -> ( Y +s X ) |
34 |
1
|
adantr |
|- ( ( ph /\ ( bday ` Z ) e. ( bday ` Y ) ) -> A. x e. No A. y e. No A. z e. No ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( x +s y ) e. No /\ ( y ( y +s x ) |
35 |
2
|
adantr |
|- ( ( ph /\ ( bday ` Z ) e. ( bday ` Y ) ) -> X e. No ) |
36 |
3
|
adantr |
|- ( ( ph /\ ( bday ` Z ) e. ( bday ` Y ) ) -> Y e. No ) |
37 |
4
|
adantr |
|- ( ( ph /\ ( bday ` Z ) e. ( bday ` Y ) ) -> Z e. No ) |
38 |
5
|
adantr |
|- ( ( ph /\ ( bday ` Z ) e. ( bday ` Y ) ) -> Y |
39 |
|
simpr |
|- ( ( ph /\ ( bday ` Z ) e. ( bday ` Y ) ) -> ( bday ` Z ) e. ( bday ` Y ) ) |
40 |
34 35 36 37 38 39
|
addsproplem5 |
|- ( ( ph /\ ( bday ` Z ) e. ( bday ` Y ) ) -> ( Y +s X ) |
41 |
40
|
ex |
|- ( ph -> ( ( bday ` Z ) e. ( bday ` Y ) -> ( Y +s X ) |
42 |
24 33 41
|
3jaod |
|- ( ph -> ( ( ( bday ` Y ) e. ( bday ` Z ) \/ ( bday ` Y ) = ( bday ` Z ) \/ ( bday ` Z ) e. ( bday ` Y ) ) -> ( Y +s X ) |
43 |
15 42
|
mpi |
|- ( ph -> ( Y +s X ) |