| Step |
Hyp |
Ref |
Expression |
| 1 |
|
peano2cnm |
|- ( C e. CC -> ( C - 1 ) e. CC ) |
| 2 |
|
id |
|- ( C e. CC -> C e. CC ) |
| 3 |
|
4cn |
|- 4 e. CC |
| 4 |
3
|
a1i |
|- ( C e. CC -> 4 e. CC ) |
| 5 |
2 4
|
subcld |
|- ( C e. CC -> ( C - 4 ) e. CC ) |
| 6 |
|
1cnd |
|- ( C e. CC -> 1 e. CC ) |
| 7 |
|
1re |
|- 1 e. RR |
| 8 |
|
1lt4 |
|- 1 < 4 |
| 9 |
7 8
|
ltneii |
|- 1 =/= 4 |
| 10 |
9
|
a1i |
|- ( C e. CC -> 1 =/= 4 ) |
| 11 |
2 6 4 10
|
subneintrd |
|- ( C e. CC -> ( C - 1 ) =/= ( C - 4 ) ) |
| 12 |
|
oveq1 |
|- ( b = 1 -> ( b ^ 2 ) = ( 1 ^ 2 ) ) |
| 13 |
12
|
oveq2d |
|- ( b = 1 -> ( ( C - 1 ) + ( b ^ 2 ) ) = ( ( C - 1 ) + ( 1 ^ 2 ) ) ) |
| 14 |
13
|
eqeq1d |
|- ( b = 1 -> ( ( ( C - 1 ) + ( b ^ 2 ) ) = C <-> ( ( C - 1 ) + ( 1 ^ 2 ) ) = C ) ) |
| 15 |
14
|
adantl |
|- ( ( C e. CC /\ b = 1 ) -> ( ( ( C - 1 ) + ( b ^ 2 ) ) = C <-> ( ( C - 1 ) + ( 1 ^ 2 ) ) = C ) ) |
| 16 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
| 17 |
16
|
oveq2i |
|- ( ( C - 1 ) + ( 1 ^ 2 ) ) = ( ( C - 1 ) + 1 ) |
| 18 |
|
npcan1 |
|- ( C e. CC -> ( ( C - 1 ) + 1 ) = C ) |
| 19 |
17 18
|
eqtrid |
|- ( C e. CC -> ( ( C - 1 ) + ( 1 ^ 2 ) ) = C ) |
| 20 |
6 15 19
|
rspcedvd |
|- ( C e. CC -> E. b e. CC ( ( C - 1 ) + ( b ^ 2 ) ) = C ) |
| 21 |
|
2cnd |
|- ( C e. CC -> 2 e. CC ) |
| 22 |
|
oveq1 |
|- ( b = 2 -> ( b ^ 2 ) = ( 2 ^ 2 ) ) |
| 23 |
22
|
oveq2d |
|- ( b = 2 -> ( ( C - 4 ) + ( b ^ 2 ) ) = ( ( C - 4 ) + ( 2 ^ 2 ) ) ) |
| 24 |
23
|
eqeq1d |
|- ( b = 2 -> ( ( ( C - 4 ) + ( b ^ 2 ) ) = C <-> ( ( C - 4 ) + ( 2 ^ 2 ) ) = C ) ) |
| 25 |
24
|
adantl |
|- ( ( C e. CC /\ b = 2 ) -> ( ( ( C - 4 ) + ( b ^ 2 ) ) = C <-> ( ( C - 4 ) + ( 2 ^ 2 ) ) = C ) ) |
| 26 |
|
2cn |
|- 2 e. CC |
| 27 |
26
|
sqcli |
|- ( 2 ^ 2 ) e. CC |
| 28 |
27
|
a1i |
|- ( C e. CC -> ( 2 ^ 2 ) e. CC ) |
| 29 |
2 4 28
|
subadd23d |
|- ( C e. CC -> ( ( C - 4 ) + ( 2 ^ 2 ) ) = ( C + ( ( 2 ^ 2 ) - 4 ) ) ) |
| 30 |
|
sq2 |
|- ( 2 ^ 2 ) = 4 |
| 31 |
30
|
a1i |
|- ( C e. CC -> ( 2 ^ 2 ) = 4 ) |
| 32 |
28 31
|
subeq0bd |
|- ( C e. CC -> ( ( 2 ^ 2 ) - 4 ) = 0 ) |
| 33 |
27 3
|
subcli |
|- ( ( 2 ^ 2 ) - 4 ) e. CC |
| 34 |
|
addid0 |
|- ( ( C e. CC /\ ( ( 2 ^ 2 ) - 4 ) e. CC ) -> ( ( C + ( ( 2 ^ 2 ) - 4 ) ) = C <-> ( ( 2 ^ 2 ) - 4 ) = 0 ) ) |
| 35 |
33 34
|
mpan2 |
|- ( C e. CC -> ( ( C + ( ( 2 ^ 2 ) - 4 ) ) = C <-> ( ( 2 ^ 2 ) - 4 ) = 0 ) ) |
| 36 |
32 35
|
mpbird |
|- ( C e. CC -> ( C + ( ( 2 ^ 2 ) - 4 ) ) = C ) |
| 37 |
29 36
|
eqtrd |
|- ( C e. CC -> ( ( C - 4 ) + ( 2 ^ 2 ) ) = C ) |
| 38 |
21 25 37
|
rspcedvd |
|- ( C e. CC -> E. b e. CC ( ( C - 4 ) + ( b ^ 2 ) ) = C ) |
| 39 |
|
oveq1 |
|- ( a = ( C - 1 ) -> ( a + ( b ^ 2 ) ) = ( ( C - 1 ) + ( b ^ 2 ) ) ) |
| 40 |
39
|
eqeq1d |
|- ( a = ( C - 1 ) -> ( ( a + ( b ^ 2 ) ) = C <-> ( ( C - 1 ) + ( b ^ 2 ) ) = C ) ) |
| 41 |
40
|
rexbidv |
|- ( a = ( C - 1 ) -> ( E. b e. CC ( a + ( b ^ 2 ) ) = C <-> E. b e. CC ( ( C - 1 ) + ( b ^ 2 ) ) = C ) ) |
| 42 |
|
oveq1 |
|- ( a = ( C - 4 ) -> ( a + ( b ^ 2 ) ) = ( ( C - 4 ) + ( b ^ 2 ) ) ) |
| 43 |
42
|
eqeq1d |
|- ( a = ( C - 4 ) -> ( ( a + ( b ^ 2 ) ) = C <-> ( ( C - 4 ) + ( b ^ 2 ) ) = C ) ) |
| 44 |
43
|
rexbidv |
|- ( a = ( C - 4 ) -> ( E. b e. CC ( a + ( b ^ 2 ) ) = C <-> E. b e. CC ( ( C - 4 ) + ( b ^ 2 ) ) = C ) ) |
| 45 |
41 44
|
2nreu |
|- ( ( ( C - 1 ) e. CC /\ ( C - 4 ) e. CC /\ ( C - 1 ) =/= ( C - 4 ) ) -> ( ( E. b e. CC ( ( C - 1 ) + ( b ^ 2 ) ) = C /\ E. b e. CC ( ( C - 4 ) + ( b ^ 2 ) ) = C ) -> -. E! a e. CC E. b e. CC ( a + ( b ^ 2 ) ) = C ) ) |
| 46 |
45
|
imp |
|- ( ( ( ( C - 1 ) e. CC /\ ( C - 4 ) e. CC /\ ( C - 1 ) =/= ( C - 4 ) ) /\ ( E. b e. CC ( ( C - 1 ) + ( b ^ 2 ) ) = C /\ E. b e. CC ( ( C - 4 ) + ( b ^ 2 ) ) = C ) ) -> -. E! a e. CC E. b e. CC ( a + ( b ^ 2 ) ) = C ) |
| 47 |
1 5 11 20 38 46
|
syl32anc |
|- ( C e. CC -> -. E! a e. CC E. b e. CC ( a + ( b ^ 2 ) ) = C ) |