Metamath Proof Explorer


Theorem addsqrexnreu

Description: For each complex number, there exists a complex number to which the square of more than one (or no) other complex numbers can be added to result in the given complex number.

Remark: This theorem, together with addsq2reu , shows that there are cases in which there is a set together with a not unique other set fulfilling a wff, although there is a unique set fulfilling the wff together with another unique set (see addsq2reu ). For more details see comment for addsqnreup . (Contributed by AV, 20-Jun-2023)

Ref Expression
Assertion addsqrexnreu
|- ( C e. CC -> E. a e. CC -. E! b e. CC ( a + ( b ^ 2 ) ) = C )

Proof

Step Hyp Ref Expression
1 peano2cnm
 |-  ( C e. CC -> ( C - 1 ) e. CC )
2 oveq1
 |-  ( a = ( C - 1 ) -> ( a + ( b ^ 2 ) ) = ( ( C - 1 ) + ( b ^ 2 ) ) )
3 2 eqeq1d
 |-  ( a = ( C - 1 ) -> ( ( a + ( b ^ 2 ) ) = C <-> ( ( C - 1 ) + ( b ^ 2 ) ) = C ) )
4 3 reubidv
 |-  ( a = ( C - 1 ) -> ( E! b e. CC ( a + ( b ^ 2 ) ) = C <-> E! b e. CC ( ( C - 1 ) + ( b ^ 2 ) ) = C ) )
5 4 notbid
 |-  ( a = ( C - 1 ) -> ( -. E! b e. CC ( a + ( b ^ 2 ) ) = C <-> -. E! b e. CC ( ( C - 1 ) + ( b ^ 2 ) ) = C ) )
6 5 adantl
 |-  ( ( C e. CC /\ a = ( C - 1 ) ) -> ( -. E! b e. CC ( a + ( b ^ 2 ) ) = C <-> -. E! b e. CC ( ( C - 1 ) + ( b ^ 2 ) ) = C ) )
7 ax-1cn
 |-  1 e. CC
8 neg1cn
 |-  -u 1 e. CC
9 1nn
 |-  1 e. NN
10 nnneneg
 |-  ( 1 e. NN -> 1 =/= -u 1 )
11 9 10 ax-mp
 |-  1 =/= -u 1
12 7 8 11 3pm3.2i
 |-  ( 1 e. CC /\ -u 1 e. CC /\ 1 =/= -u 1 )
13 sq1
 |-  ( 1 ^ 2 ) = 1
14 13 eqcomi
 |-  1 = ( 1 ^ 2 )
15 neg1sqe1
 |-  ( -u 1 ^ 2 ) = 1
16 15 eqcomi
 |-  1 = ( -u 1 ^ 2 )
17 14 16 pm3.2i
 |-  ( 1 = ( 1 ^ 2 ) /\ 1 = ( -u 1 ^ 2 ) )
18 oveq1
 |-  ( b = 1 -> ( b ^ 2 ) = ( 1 ^ 2 ) )
19 18 eqeq2d
 |-  ( b = 1 -> ( 1 = ( b ^ 2 ) <-> 1 = ( 1 ^ 2 ) ) )
20 oveq1
 |-  ( b = -u 1 -> ( b ^ 2 ) = ( -u 1 ^ 2 ) )
21 20 eqeq2d
 |-  ( b = -u 1 -> ( 1 = ( b ^ 2 ) <-> 1 = ( -u 1 ^ 2 ) ) )
22 19 21 2nreu
 |-  ( ( 1 e. CC /\ -u 1 e. CC /\ 1 =/= -u 1 ) -> ( ( 1 = ( 1 ^ 2 ) /\ 1 = ( -u 1 ^ 2 ) ) -> -. E! b e. CC 1 = ( b ^ 2 ) ) )
23 12 17 22 mp2
 |-  -. E! b e. CC 1 = ( b ^ 2 )
24 simpl
 |-  ( ( C e. CC /\ b e. CC ) -> C e. CC )
25 1 adantr
 |-  ( ( C e. CC /\ b e. CC ) -> ( C - 1 ) e. CC )
26 sqcl
 |-  ( b e. CC -> ( b ^ 2 ) e. CC )
27 26 adantl
 |-  ( ( C e. CC /\ b e. CC ) -> ( b ^ 2 ) e. CC )
28 24 25 27 subaddd
 |-  ( ( C e. CC /\ b e. CC ) -> ( ( C - ( C - 1 ) ) = ( b ^ 2 ) <-> ( ( C - 1 ) + ( b ^ 2 ) ) = C ) )
29 id
 |-  ( C e. CC -> C e. CC )
30 1cnd
 |-  ( C e. CC -> 1 e. CC )
31 29 30 nncand
 |-  ( C e. CC -> ( C - ( C - 1 ) ) = 1 )
32 31 adantr
 |-  ( ( C e. CC /\ b e. CC ) -> ( C - ( C - 1 ) ) = 1 )
33 32 eqeq1d
 |-  ( ( C e. CC /\ b e. CC ) -> ( ( C - ( C - 1 ) ) = ( b ^ 2 ) <-> 1 = ( b ^ 2 ) ) )
34 28 33 bitr3d
 |-  ( ( C e. CC /\ b e. CC ) -> ( ( ( C - 1 ) + ( b ^ 2 ) ) = C <-> 1 = ( b ^ 2 ) ) )
35 34 reubidva
 |-  ( C e. CC -> ( E! b e. CC ( ( C - 1 ) + ( b ^ 2 ) ) = C <-> E! b e. CC 1 = ( b ^ 2 ) ) )
36 23 35 mtbiri
 |-  ( C e. CC -> -. E! b e. CC ( ( C - 1 ) + ( b ^ 2 ) ) = C )
37 1 6 36 rspcedvd
 |-  ( C e. CC -> E. a e. CC -. E! b e. CC ( a + ( b ^ 2 ) ) = C )