Step |
Hyp |
Ref |
Expression |
1 |
|
subadd23 |
|- ( ( A e. CC /\ C e. CC /\ B e. CC ) -> ( ( A - C ) + B ) = ( A + ( B - C ) ) ) |
2 |
|
subcl |
|- ( ( A e. CC /\ C e. CC ) -> ( A - C ) e. CC ) |
3 |
|
addcom |
|- ( ( ( A - C ) e. CC /\ B e. CC ) -> ( ( A - C ) + B ) = ( B + ( A - C ) ) ) |
4 |
2 3
|
stoic3 |
|- ( ( A e. CC /\ C e. CC /\ B e. CC ) -> ( ( A - C ) + B ) = ( B + ( A - C ) ) ) |
5 |
1 4
|
eqtr3d |
|- ( ( A e. CC /\ C e. CC /\ B e. CC ) -> ( A + ( B - C ) ) = ( B + ( A - C ) ) ) |
6 |
5
|
3com23 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A + ( B - C ) ) = ( B + ( A - C ) ) ) |