Metamath Proof Explorer


Theorem addsub4i

Description: Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by NM, 17-Oct-1999)

Ref Expression
Hypotheses negidi.1
|- A e. CC
pncan3i.2
|- B e. CC
subadd.3
|- C e. CC
addsub4i.4
|- D e. CC
Assertion addsub4i
|- ( ( A + B ) - ( C + D ) ) = ( ( A - C ) + ( B - D ) )

Proof

Step Hyp Ref Expression
1 negidi.1
 |-  A e. CC
2 pncan3i.2
 |-  B e. CC
3 subadd.3
 |-  C e. CC
4 addsub4i.4
 |-  D e. CC
5 addsub4
 |-  ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + B ) - ( C + D ) ) = ( ( A - C ) + ( B - D ) ) )
6 1 2 3 4 5 mp4an
 |-  ( ( A + B ) - ( C + D ) ) = ( ( A - C ) + ( B - D ) )