| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 |  |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> A e. CC ) | 
						
							| 2 |  | subcl |  |-  ( ( B e. CC /\ C e. CC ) -> ( B - C ) e. CC ) | 
						
							| 3 | 2 | 3adant1 |  |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( B - C ) e. CC ) | 
						
							| 4 |  | simp3 |  |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> C e. CC ) | 
						
							| 5 | 1 3 4 | addassd |  |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + ( B - C ) ) + C ) = ( A + ( ( B - C ) + C ) ) ) | 
						
							| 6 |  | npcan |  |-  ( ( B e. CC /\ C e. CC ) -> ( ( B - C ) + C ) = B ) | 
						
							| 7 | 6 | 3adant1 |  |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( B - C ) + C ) = B ) | 
						
							| 8 | 7 | oveq2d |  |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A + ( ( B - C ) + C ) ) = ( A + B ) ) | 
						
							| 9 | 5 8 | eqtrd |  |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + ( B - C ) ) + C ) = ( A + B ) ) | 
						
							| 10 | 9 | oveq1d |  |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( A + ( B - C ) ) + C ) - C ) = ( ( A + B ) - C ) ) | 
						
							| 11 | 1 3 | addcld |  |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A + ( B - C ) ) e. CC ) | 
						
							| 12 |  | pncan |  |-  ( ( ( A + ( B - C ) ) e. CC /\ C e. CC ) -> ( ( ( A + ( B - C ) ) + C ) - C ) = ( A + ( B - C ) ) ) | 
						
							| 13 | 11 4 12 | syl2anc |  |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( A + ( B - C ) ) + C ) - C ) = ( A + ( B - C ) ) ) | 
						
							| 14 | 10 13 | eqtr3d |  |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + B ) - C ) = ( A + ( B - C ) ) ) |