| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> A e. CC ) |
| 2 |
|
subcl |
|- ( ( B e. CC /\ C e. CC ) -> ( B - C ) e. CC ) |
| 3 |
2
|
3adant1 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( B - C ) e. CC ) |
| 4 |
|
simp3 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> C e. CC ) |
| 5 |
1 3 4
|
addassd |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + ( B - C ) ) + C ) = ( A + ( ( B - C ) + C ) ) ) |
| 6 |
|
npcan |
|- ( ( B e. CC /\ C e. CC ) -> ( ( B - C ) + C ) = B ) |
| 7 |
6
|
3adant1 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( B - C ) + C ) = B ) |
| 8 |
7
|
oveq2d |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A + ( ( B - C ) + C ) ) = ( A + B ) ) |
| 9 |
5 8
|
eqtrd |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + ( B - C ) ) + C ) = ( A + B ) ) |
| 10 |
9
|
oveq1d |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( A + ( B - C ) ) + C ) - C ) = ( ( A + B ) - C ) ) |
| 11 |
1 3
|
addcld |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A + ( B - C ) ) e. CC ) |
| 12 |
|
pncan |
|- ( ( ( A + ( B - C ) ) e. CC /\ C e. CC ) -> ( ( ( A + ( B - C ) ) + C ) - C ) = ( A + ( B - C ) ) ) |
| 13 |
11 4 12
|
syl2anc |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( A + ( B - C ) ) + C ) - C ) = ( A + ( B - C ) ) ) |
| 14 |
10 13
|
eqtr3d |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + B ) - C ) = ( A + ( B - C ) ) ) |