Step |
Hyp |
Ref |
Expression |
1 |
|
eqcom |
|- ( ( C - A ) = ( B - D ) <-> ( B - D ) = ( C - A ) ) |
2 |
|
subcl |
|- ( ( C e. CC /\ A e. CC ) -> ( C - A ) e. CC ) |
3 |
2
|
ancoms |
|- ( ( A e. CC /\ C e. CC ) -> ( C - A ) e. CC ) |
4 |
|
subadd |
|- ( ( B e. CC /\ D e. CC /\ ( C - A ) e. CC ) -> ( ( B - D ) = ( C - A ) <-> ( D + ( C - A ) ) = B ) ) |
5 |
4
|
3expa |
|- ( ( ( B e. CC /\ D e. CC ) /\ ( C - A ) e. CC ) -> ( ( B - D ) = ( C - A ) <-> ( D + ( C - A ) ) = B ) ) |
6 |
5
|
ancoms |
|- ( ( ( C - A ) e. CC /\ ( B e. CC /\ D e. CC ) ) -> ( ( B - D ) = ( C - A ) <-> ( D + ( C - A ) ) = B ) ) |
7 |
3 6
|
sylan |
|- ( ( ( A e. CC /\ C e. CC ) /\ ( B e. CC /\ D e. CC ) ) -> ( ( B - D ) = ( C - A ) <-> ( D + ( C - A ) ) = B ) ) |
8 |
7
|
an4s |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( B - D ) = ( C - A ) <-> ( D + ( C - A ) ) = B ) ) |
9 |
1 8
|
syl5bb |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( C - A ) = ( B - D ) <-> ( D + ( C - A ) ) = B ) ) |
10 |
|
addcom |
|- ( ( C e. CC /\ D e. CC ) -> ( C + D ) = ( D + C ) ) |
11 |
10
|
adantl |
|- ( ( A e. CC /\ ( C e. CC /\ D e. CC ) ) -> ( C + D ) = ( D + C ) ) |
12 |
11
|
oveq1d |
|- ( ( A e. CC /\ ( C e. CC /\ D e. CC ) ) -> ( ( C + D ) - A ) = ( ( D + C ) - A ) ) |
13 |
|
addsubass |
|- ( ( D e. CC /\ C e. CC /\ A e. CC ) -> ( ( D + C ) - A ) = ( D + ( C - A ) ) ) |
14 |
13
|
3com12 |
|- ( ( C e. CC /\ D e. CC /\ A e. CC ) -> ( ( D + C ) - A ) = ( D + ( C - A ) ) ) |
15 |
14
|
3expa |
|- ( ( ( C e. CC /\ D e. CC ) /\ A e. CC ) -> ( ( D + C ) - A ) = ( D + ( C - A ) ) ) |
16 |
15
|
ancoms |
|- ( ( A e. CC /\ ( C e. CC /\ D e. CC ) ) -> ( ( D + C ) - A ) = ( D + ( C - A ) ) ) |
17 |
12 16
|
eqtrd |
|- ( ( A e. CC /\ ( C e. CC /\ D e. CC ) ) -> ( ( C + D ) - A ) = ( D + ( C - A ) ) ) |
18 |
17
|
adantlr |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( C + D ) - A ) = ( D + ( C - A ) ) ) |
19 |
18
|
eqeq1d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( C + D ) - A ) = B <-> ( D + ( C - A ) ) = B ) ) |
20 |
|
addcl |
|- ( ( C e. CC /\ D e. CC ) -> ( C + D ) e. CC ) |
21 |
|
subadd |
|- ( ( ( C + D ) e. CC /\ A e. CC /\ B e. CC ) -> ( ( ( C + D ) - A ) = B <-> ( A + B ) = ( C + D ) ) ) |
22 |
21
|
3expb |
|- ( ( ( C + D ) e. CC /\ ( A e. CC /\ B e. CC ) ) -> ( ( ( C + D ) - A ) = B <-> ( A + B ) = ( C + D ) ) ) |
23 |
22
|
ancoms |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C + D ) e. CC ) -> ( ( ( C + D ) - A ) = B <-> ( A + B ) = ( C + D ) ) ) |
24 |
20 23
|
sylan2 |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( C + D ) - A ) = B <-> ( A + B ) = ( C + D ) ) ) |
25 |
9 19 24
|
3bitr2rd |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + B ) = ( C + D ) <-> ( C - A ) = ( B - D ) ) ) |