Description: Relation between sums and differences. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | negidd.1 | |- ( ph -> A e. CC ) |
|
| pncand.2 | |- ( ph -> B e. CC ) |
||
| subaddd.3 | |- ( ph -> C e. CC ) |
||
| addsub4d.4 | |- ( ph -> D e. CC ) |
||
| Assertion | addsubeq4d | |- ( ph -> ( ( A + B ) = ( C + D ) <-> ( C - A ) = ( B - D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | |- ( ph -> A e. CC ) |
|
| 2 | pncand.2 | |- ( ph -> B e. CC ) |
|
| 3 | subaddd.3 | |- ( ph -> C e. CC ) |
|
| 4 | addsub4d.4 | |- ( ph -> D e. CC ) |
|
| 5 | addsubeq4 | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + B ) = ( C + D ) <-> ( C - A ) = ( B - D ) ) ) |
|
| 6 | 1 2 3 4 5 | syl22anc | |- ( ph -> ( ( A + B ) = ( C + D ) <-> ( C - A ) = ( B - D ) ) ) |