Metamath Proof Explorer


Theorem addsubs4d

Description: Rearrangement of four terms in mixed addition and subtraction. Surreal version. (Contributed by Scott Fenton, 25-Jul-2025)

Ref Expression
Hypotheses addsubs4d.1
|- ( ph -> A e. No )
addsubs4d.2
|- ( ph -> B e. No )
addsubs4d.3
|- ( ph -> C e. No )
addsubs4d.4
|- ( ph -> D e. No )
Assertion addsubs4d
|- ( ph -> ( ( A +s B ) -s ( C +s D ) ) = ( ( A -s C ) +s ( B -s D ) ) )

Proof

Step Hyp Ref Expression
1 addsubs4d.1
 |-  ( ph -> A e. No )
2 addsubs4d.2
 |-  ( ph -> B e. No )
3 addsubs4d.3
 |-  ( ph -> C e. No )
4 addsubs4d.4
 |-  ( ph -> D e. No )
5 1 2 3 addsubsd
 |-  ( ph -> ( ( A +s B ) -s C ) = ( ( A -s C ) +s B ) )
6 5 oveq1d
 |-  ( ph -> ( ( ( A +s B ) -s C ) -s D ) = ( ( ( A -s C ) +s B ) -s D ) )
7 1 2 addscld
 |-  ( ph -> ( A +s B ) e. No )
8 7 3 4 subsubs4d
 |-  ( ph -> ( ( ( A +s B ) -s C ) -s D ) = ( ( A +s B ) -s ( C +s D ) ) )
9 1 3 subscld
 |-  ( ph -> ( A -s C ) e. No )
10 9 2 4 addsubsassd
 |-  ( ph -> ( ( ( A -s C ) +s B ) -s D ) = ( ( A -s C ) +s ( B -s D ) ) )
11 6 8 10 3eqtr3d
 |-  ( ph -> ( ( A +s B ) -s ( C +s D ) ) = ( ( A -s C ) +s ( B -s D ) ) )