Step |
Hyp |
Ref |
Expression |
1 |
|
addsval |
|- ( ( A e. No /\ B e. No ) -> ( A +s B ) = ( ( { a | E. b e. ( _Left ` A ) a = ( b +s B ) } u. { c | E. b e. ( _Left ` B ) c = ( A +s b ) } ) |s ( { a | E. d e. ( _Right ` A ) a = ( d +s B ) } u. { c | E. d e. ( _Right ` B ) c = ( A +s d ) } ) ) ) |
2 |
|
eqeq1 |
|- ( a = y -> ( a = ( b +s B ) <-> y = ( b +s B ) ) ) |
3 |
2
|
rexbidv |
|- ( a = y -> ( E. b e. ( _Left ` A ) a = ( b +s B ) <-> E. b e. ( _Left ` A ) y = ( b +s B ) ) ) |
4 |
|
oveq1 |
|- ( b = l -> ( b +s B ) = ( l +s B ) ) |
5 |
4
|
eqeq2d |
|- ( b = l -> ( y = ( b +s B ) <-> y = ( l +s B ) ) ) |
6 |
5
|
cbvrexvw |
|- ( E. b e. ( _Left ` A ) y = ( b +s B ) <-> E. l e. ( _Left ` A ) y = ( l +s B ) ) |
7 |
3 6
|
bitrdi |
|- ( a = y -> ( E. b e. ( _Left ` A ) a = ( b +s B ) <-> E. l e. ( _Left ` A ) y = ( l +s B ) ) ) |
8 |
7
|
cbvabv |
|- { a | E. b e. ( _Left ` A ) a = ( b +s B ) } = { y | E. l e. ( _Left ` A ) y = ( l +s B ) } |
9 |
|
eqeq1 |
|- ( c = z -> ( c = ( A +s b ) <-> z = ( A +s b ) ) ) |
10 |
9
|
rexbidv |
|- ( c = z -> ( E. b e. ( _Left ` B ) c = ( A +s b ) <-> E. b e. ( _Left ` B ) z = ( A +s b ) ) ) |
11 |
|
oveq2 |
|- ( b = m -> ( A +s b ) = ( A +s m ) ) |
12 |
11
|
eqeq2d |
|- ( b = m -> ( z = ( A +s b ) <-> z = ( A +s m ) ) ) |
13 |
12
|
cbvrexvw |
|- ( E. b e. ( _Left ` B ) z = ( A +s b ) <-> E. m e. ( _Left ` B ) z = ( A +s m ) ) |
14 |
10 13
|
bitrdi |
|- ( c = z -> ( E. b e. ( _Left ` B ) c = ( A +s b ) <-> E. m e. ( _Left ` B ) z = ( A +s m ) ) ) |
15 |
14
|
cbvabv |
|- { c | E. b e. ( _Left ` B ) c = ( A +s b ) } = { z | E. m e. ( _Left ` B ) z = ( A +s m ) } |
16 |
8 15
|
uneq12i |
|- ( { a | E. b e. ( _Left ` A ) a = ( b +s B ) } u. { c | E. b e. ( _Left ` B ) c = ( A +s b ) } ) = ( { y | E. l e. ( _Left ` A ) y = ( l +s B ) } u. { z | E. m e. ( _Left ` B ) z = ( A +s m ) } ) |
17 |
|
eqeq1 |
|- ( a = w -> ( a = ( d +s B ) <-> w = ( d +s B ) ) ) |
18 |
17
|
rexbidv |
|- ( a = w -> ( E. d e. ( _Right ` A ) a = ( d +s B ) <-> E. d e. ( _Right ` A ) w = ( d +s B ) ) ) |
19 |
|
oveq1 |
|- ( d = r -> ( d +s B ) = ( r +s B ) ) |
20 |
19
|
eqeq2d |
|- ( d = r -> ( w = ( d +s B ) <-> w = ( r +s B ) ) ) |
21 |
20
|
cbvrexvw |
|- ( E. d e. ( _Right ` A ) w = ( d +s B ) <-> E. r e. ( _Right ` A ) w = ( r +s B ) ) |
22 |
18 21
|
bitrdi |
|- ( a = w -> ( E. d e. ( _Right ` A ) a = ( d +s B ) <-> E. r e. ( _Right ` A ) w = ( r +s B ) ) ) |
23 |
22
|
cbvabv |
|- { a | E. d e. ( _Right ` A ) a = ( d +s B ) } = { w | E. r e. ( _Right ` A ) w = ( r +s B ) } |
24 |
|
eqeq1 |
|- ( c = t -> ( c = ( A +s d ) <-> t = ( A +s d ) ) ) |
25 |
24
|
rexbidv |
|- ( c = t -> ( E. d e. ( _Right ` B ) c = ( A +s d ) <-> E. d e. ( _Right ` B ) t = ( A +s d ) ) ) |
26 |
|
oveq2 |
|- ( d = s -> ( A +s d ) = ( A +s s ) ) |
27 |
26
|
eqeq2d |
|- ( d = s -> ( t = ( A +s d ) <-> t = ( A +s s ) ) ) |
28 |
27
|
cbvrexvw |
|- ( E. d e. ( _Right ` B ) t = ( A +s d ) <-> E. s e. ( _Right ` B ) t = ( A +s s ) ) |
29 |
25 28
|
bitrdi |
|- ( c = t -> ( E. d e. ( _Right ` B ) c = ( A +s d ) <-> E. s e. ( _Right ` B ) t = ( A +s s ) ) ) |
30 |
29
|
cbvabv |
|- { c | E. d e. ( _Right ` B ) c = ( A +s d ) } = { t | E. s e. ( _Right ` B ) t = ( A +s s ) } |
31 |
23 30
|
uneq12i |
|- ( { a | E. d e. ( _Right ` A ) a = ( d +s B ) } u. { c | E. d e. ( _Right ` B ) c = ( A +s d ) } ) = ( { w | E. r e. ( _Right ` A ) w = ( r +s B ) } u. { t | E. s e. ( _Right ` B ) t = ( A +s s ) } ) |
32 |
16 31
|
oveq12i |
|- ( ( { a | E. b e. ( _Left ` A ) a = ( b +s B ) } u. { c | E. b e. ( _Left ` B ) c = ( A +s b ) } ) |s ( { a | E. d e. ( _Right ` A ) a = ( d +s B ) } u. { c | E. d e. ( _Right ` B ) c = ( A +s d ) } ) ) = ( ( { y | E. l e. ( _Left ` A ) y = ( l +s B ) } u. { z | E. m e. ( _Left ` B ) z = ( A +s m ) } ) |s ( { w | E. r e. ( _Right ` A ) w = ( r +s B ) } u. { t | E. s e. ( _Right ` B ) t = ( A +s s ) } ) ) |
33 |
1 32
|
eqtrdi |
|- ( ( A e. No /\ B e. No ) -> ( A +s B ) = ( ( { y | E. l e. ( _Left ` A ) y = ( l +s B ) } u. { z | E. m e. ( _Left ` B ) z = ( A +s m ) } ) |s ( { w | E. r e. ( _Right ` A ) w = ( r +s B ) } u. { t | E. s e. ( _Right ` B ) t = ( A +s s ) } ) ) ) |