Step |
Hyp |
Ref |
Expression |
1 |
|
ho0f |
|- 0hop : ~H --> ~H |
2 |
|
ho0val |
|- ( x e. ~H -> ( 0hop ` x ) = 0h ) |
3 |
2
|
oveq1d |
|- ( x e. ~H -> ( ( 0hop ` x ) .ih y ) = ( 0h .ih y ) ) |
4 |
|
hi01 |
|- ( y e. ~H -> ( 0h .ih y ) = 0 ) |
5 |
3 4
|
sylan9eq |
|- ( ( x e. ~H /\ y e. ~H ) -> ( ( 0hop ` x ) .ih y ) = 0 ) |
6 |
|
ho0val |
|- ( y e. ~H -> ( 0hop ` y ) = 0h ) |
7 |
6
|
oveq2d |
|- ( y e. ~H -> ( x .ih ( 0hop ` y ) ) = ( x .ih 0h ) ) |
8 |
|
hi02 |
|- ( x e. ~H -> ( x .ih 0h ) = 0 ) |
9 |
7 8
|
sylan9eqr |
|- ( ( x e. ~H /\ y e. ~H ) -> ( x .ih ( 0hop ` y ) ) = 0 ) |
10 |
5 9
|
eqtr4d |
|- ( ( x e. ~H /\ y e. ~H ) -> ( ( 0hop ` x ) .ih y ) = ( x .ih ( 0hop ` y ) ) ) |
11 |
10
|
rgen2 |
|- A. x e. ~H A. y e. ~H ( ( 0hop ` x ) .ih y ) = ( x .ih ( 0hop ` y ) ) |
12 |
|
adjeq |
|- ( ( 0hop : ~H --> ~H /\ 0hop : ~H --> ~H /\ A. x e. ~H A. y e. ~H ( ( 0hop ` x ) .ih y ) = ( x .ih ( 0hop ` y ) ) ) -> ( adjh ` 0hop ) = 0hop ) |
13 |
1 1 11 12
|
mp3an |
|- ( adjh ` 0hop ) = 0hop |