| Step |
Hyp |
Ref |
Expression |
| 1 |
|
adj1 |
|- ( ( T e. dom adjh /\ B e. ~H /\ A e. ~H ) -> ( B .ih ( T ` A ) ) = ( ( ( adjh ` T ) ` B ) .ih A ) ) |
| 2 |
|
simp2 |
|- ( ( T e. dom adjh /\ B e. ~H /\ A e. ~H ) -> B e. ~H ) |
| 3 |
|
dmadjop |
|- ( T e. dom adjh -> T : ~H --> ~H ) |
| 4 |
3
|
ffvelcdmda |
|- ( ( T e. dom adjh /\ A e. ~H ) -> ( T ` A ) e. ~H ) |
| 5 |
4
|
3adant2 |
|- ( ( T e. dom adjh /\ B e. ~H /\ A e. ~H ) -> ( T ` A ) e. ~H ) |
| 6 |
|
ax-his1 |
|- ( ( B e. ~H /\ ( T ` A ) e. ~H ) -> ( B .ih ( T ` A ) ) = ( * ` ( ( T ` A ) .ih B ) ) ) |
| 7 |
2 5 6
|
syl2anc |
|- ( ( T e. dom adjh /\ B e. ~H /\ A e. ~H ) -> ( B .ih ( T ` A ) ) = ( * ` ( ( T ` A ) .ih B ) ) ) |
| 8 |
|
adjcl |
|- ( ( T e. dom adjh /\ B e. ~H ) -> ( ( adjh ` T ) ` B ) e. ~H ) |
| 9 |
8
|
3adant3 |
|- ( ( T e. dom adjh /\ B e. ~H /\ A e. ~H ) -> ( ( adjh ` T ) ` B ) e. ~H ) |
| 10 |
|
simp3 |
|- ( ( T e. dom adjh /\ B e. ~H /\ A e. ~H ) -> A e. ~H ) |
| 11 |
|
ax-his1 |
|- ( ( ( ( adjh ` T ) ` B ) e. ~H /\ A e. ~H ) -> ( ( ( adjh ` T ) ` B ) .ih A ) = ( * ` ( A .ih ( ( adjh ` T ) ` B ) ) ) ) |
| 12 |
9 10 11
|
syl2anc |
|- ( ( T e. dom adjh /\ B e. ~H /\ A e. ~H ) -> ( ( ( adjh ` T ) ` B ) .ih A ) = ( * ` ( A .ih ( ( adjh ` T ) ` B ) ) ) ) |
| 13 |
1 7 12
|
3eqtr3d |
|- ( ( T e. dom adjh /\ B e. ~H /\ A e. ~H ) -> ( * ` ( ( T ` A ) .ih B ) ) = ( * ` ( A .ih ( ( adjh ` T ) ` B ) ) ) ) |
| 14 |
|
hicl |
|- ( ( ( T ` A ) e. ~H /\ B e. ~H ) -> ( ( T ` A ) .ih B ) e. CC ) |
| 15 |
5 2 14
|
syl2anc |
|- ( ( T e. dom adjh /\ B e. ~H /\ A e. ~H ) -> ( ( T ` A ) .ih B ) e. CC ) |
| 16 |
|
hicl |
|- ( ( A e. ~H /\ ( ( adjh ` T ) ` B ) e. ~H ) -> ( A .ih ( ( adjh ` T ) ` B ) ) e. CC ) |
| 17 |
10 9 16
|
syl2anc |
|- ( ( T e. dom adjh /\ B e. ~H /\ A e. ~H ) -> ( A .ih ( ( adjh ` T ) ` B ) ) e. CC ) |
| 18 |
|
cj11 |
|- ( ( ( ( T ` A ) .ih B ) e. CC /\ ( A .ih ( ( adjh ` T ) ` B ) ) e. CC ) -> ( ( * ` ( ( T ` A ) .ih B ) ) = ( * ` ( A .ih ( ( adjh ` T ) ` B ) ) ) <-> ( ( T ` A ) .ih B ) = ( A .ih ( ( adjh ` T ) ` B ) ) ) ) |
| 19 |
15 17 18
|
syl2anc |
|- ( ( T e. dom adjh /\ B e. ~H /\ A e. ~H ) -> ( ( * ` ( ( T ` A ) .ih B ) ) = ( * ` ( A .ih ( ( adjh ` T ) ` B ) ) ) <-> ( ( T ` A ) .ih B ) = ( A .ih ( ( adjh ` T ) ` B ) ) ) ) |
| 20 |
13 19
|
mpbid |
|- ( ( T e. dom adjh /\ B e. ~H /\ A e. ~H ) -> ( ( T ` A ) .ih B ) = ( A .ih ( ( adjh ` T ) ` B ) ) ) |
| 21 |
20
|
3com23 |
|- ( ( T e. dom adjh /\ A e. ~H /\ B e. ~H ) -> ( ( T ` A ) .ih B ) = ( A .ih ( ( adjh ` T ) ` B ) ) ) |