Step |
Hyp |
Ref |
Expression |
1 |
|
bdopadj |
|- ( T e. BndLinOp -> T e. dom adjh ) |
2 |
|
adjval |
|- ( T e. dom adjh -> ( adjh ` T ) = ( iota_ t e. ( ~H ^m ~H ) A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( t ` x ) .ih y ) ) ) |
3 |
1 2
|
syl |
|- ( T e. BndLinOp -> ( adjh ` T ) = ( iota_ t e. ( ~H ^m ~H ) A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( t ` x ) .ih y ) ) ) |
4 |
|
cnlnadj |
|- ( T e. ( LinOp i^i ContOp ) -> E. t e. ( LinOp i^i ContOp ) A. x e. ~H A. y e. ~H ( ( T ` x ) .ih y ) = ( x .ih ( t ` y ) ) ) |
5 |
|
lncnopbd |
|- ( T e. ( LinOp i^i ContOp ) <-> T e. BndLinOp ) |
6 |
|
lncnbd |
|- ( LinOp i^i ContOp ) = BndLinOp |
7 |
6
|
rexeqi |
|- ( E. t e. ( LinOp i^i ContOp ) A. x e. ~H A. y e. ~H ( ( T ` x ) .ih y ) = ( x .ih ( t ` y ) ) <-> E. t e. BndLinOp A. x e. ~H A. y e. ~H ( ( T ` x ) .ih y ) = ( x .ih ( t ` y ) ) ) |
8 |
4 5 7
|
3imtr3i |
|- ( T e. BndLinOp -> E. t e. BndLinOp A. x e. ~H A. y e. ~H ( ( T ` x ) .ih y ) = ( x .ih ( t ` y ) ) ) |
9 |
|
bdopf |
|- ( T e. BndLinOp -> T : ~H --> ~H ) |
10 |
|
bdopf |
|- ( t e. BndLinOp -> t : ~H --> ~H ) |
11 |
|
adjsym |
|- ( ( T : ~H --> ~H /\ t : ~H --> ~H ) -> ( A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( t ` x ) .ih y ) <-> A. x e. ~H A. y e. ~H ( x .ih ( t ` y ) ) = ( ( T ` x ) .ih y ) ) ) |
12 |
9 10 11
|
syl2an |
|- ( ( T e. BndLinOp /\ t e. BndLinOp ) -> ( A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( t ` x ) .ih y ) <-> A. x e. ~H A. y e. ~H ( x .ih ( t ` y ) ) = ( ( T ` x ) .ih y ) ) ) |
13 |
|
eqcom |
|- ( ( ( T ` x ) .ih y ) = ( x .ih ( t ` y ) ) <-> ( x .ih ( t ` y ) ) = ( ( T ` x ) .ih y ) ) |
14 |
13
|
2ralbii |
|- ( A. x e. ~H A. y e. ~H ( ( T ` x ) .ih y ) = ( x .ih ( t ` y ) ) <-> A. x e. ~H A. y e. ~H ( x .ih ( t ` y ) ) = ( ( T ` x ) .ih y ) ) |
15 |
12 14
|
bitr4di |
|- ( ( T e. BndLinOp /\ t e. BndLinOp ) -> ( A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( t ` x ) .ih y ) <-> A. x e. ~H A. y e. ~H ( ( T ` x ) .ih y ) = ( x .ih ( t ` y ) ) ) ) |
16 |
15
|
rexbidva |
|- ( T e. BndLinOp -> ( E. t e. BndLinOp A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( t ` x ) .ih y ) <-> E. t e. BndLinOp A. x e. ~H A. y e. ~H ( ( T ` x ) .ih y ) = ( x .ih ( t ` y ) ) ) ) |
17 |
8 16
|
mpbird |
|- ( T e. BndLinOp -> E. t e. BndLinOp A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( t ` x ) .ih y ) ) |
18 |
|
adjeu |
|- ( T : ~H --> ~H -> ( T e. dom adjh <-> E! t e. ( ~H ^m ~H ) A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( t ` x ) .ih y ) ) ) |
19 |
9 18
|
syl |
|- ( T e. BndLinOp -> ( T e. dom adjh <-> E! t e. ( ~H ^m ~H ) A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( t ` x ) .ih y ) ) ) |
20 |
1 19
|
mpbid |
|- ( T e. BndLinOp -> E! t e. ( ~H ^m ~H ) A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( t ` x ) .ih y ) ) |
21 |
|
ax-hilex |
|- ~H e. _V |
22 |
21 21
|
elmap |
|- ( t e. ( ~H ^m ~H ) <-> t : ~H --> ~H ) |
23 |
10 22
|
sylibr |
|- ( t e. BndLinOp -> t e. ( ~H ^m ~H ) ) |
24 |
23
|
ssriv |
|- BndLinOp C_ ( ~H ^m ~H ) |
25 |
|
id |
|- ( A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( t ` x ) .ih y ) -> A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( t ` x ) .ih y ) ) |
26 |
25
|
rgenw |
|- A. t e. BndLinOp ( A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( t ` x ) .ih y ) -> A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( t ` x ) .ih y ) ) |
27 |
|
riotass2 |
|- ( ( ( BndLinOp C_ ( ~H ^m ~H ) /\ A. t e. BndLinOp ( A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( t ` x ) .ih y ) -> A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( t ` x ) .ih y ) ) ) /\ ( E. t e. BndLinOp A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( t ` x ) .ih y ) /\ E! t e. ( ~H ^m ~H ) A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( t ` x ) .ih y ) ) ) -> ( iota_ t e. BndLinOp A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( t ` x ) .ih y ) ) = ( iota_ t e. ( ~H ^m ~H ) A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( t ` x ) .ih y ) ) ) |
28 |
24 26 27
|
mpanl12 |
|- ( ( E. t e. BndLinOp A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( t ` x ) .ih y ) /\ E! t e. ( ~H ^m ~H ) A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( t ` x ) .ih y ) ) -> ( iota_ t e. BndLinOp A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( t ` x ) .ih y ) ) = ( iota_ t e. ( ~H ^m ~H ) A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( t ` x ) .ih y ) ) ) |
29 |
17 20 28
|
syl2anc |
|- ( T e. BndLinOp -> ( iota_ t e. BndLinOp A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( t ` x ) .ih y ) ) = ( iota_ t e. ( ~H ^m ~H ) A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( t ` x ) .ih y ) ) ) |
30 |
3 29
|
eqtr4d |
|- ( T e. BndLinOp -> ( adjh ` T ) = ( iota_ t e. BndLinOp A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( t ` x ) .ih y ) ) ) |
31 |
24
|
a1i |
|- ( T e. BndLinOp -> BndLinOp C_ ( ~H ^m ~H ) ) |
32 |
|
reuss |
|- ( ( BndLinOp C_ ( ~H ^m ~H ) /\ E. t e. BndLinOp A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( t ` x ) .ih y ) /\ E! t e. ( ~H ^m ~H ) A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( t ` x ) .ih y ) ) -> E! t e. BndLinOp A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( t ` x ) .ih y ) ) |
33 |
31 17 20 32
|
syl3anc |
|- ( T e. BndLinOp -> E! t e. BndLinOp A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( t ` x ) .ih y ) ) |
34 |
|
riotacl |
|- ( E! t e. BndLinOp A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( t ` x ) .ih y ) -> ( iota_ t e. BndLinOp A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( t ` x ) .ih y ) ) e. BndLinOp ) |
35 |
33 34
|
syl |
|- ( T e. BndLinOp -> ( iota_ t e. BndLinOp A. x e. ~H A. y e. ~H ( x .ih ( T ` y ) ) = ( ( t ` x ) .ih y ) ) e. BndLinOp ) |
36 |
30 35
|
eqeltrd |
|- ( T e. BndLinOp -> ( adjh ` T ) e. BndLinOp ) |