Description: Closure of the adjoint of a Hilbert space operator. (Contributed by NM, 17-Jun-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | adjcl | |- ( ( T e. dom adjh /\ A e. ~H ) -> ( ( adjh ` T ) ` A ) e. ~H ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmadjrn | |- ( T e. dom adjh -> ( adjh ` T ) e. dom adjh ) |
|
| 2 | dmadjop | |- ( ( adjh ` T ) e. dom adjh -> ( adjh ` T ) : ~H --> ~H ) |
|
| 3 | 1 2 | syl | |- ( T e. dom adjh -> ( adjh ` T ) : ~H --> ~H ) |
| 4 | 3 | ffvelcdmda | |- ( ( T e. dom adjh /\ A e. ~H ) -> ( ( adjh ` T ) ` A ) e. ~H ) |