| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fveq2 | 
							 |-  ( T = 0hop -> ( adjh ` T ) = ( adjh ` 0hop ) )  | 
						
						
							| 2 | 
							
								
							 | 
							adj0 | 
							 |-  ( adjh ` 0hop ) = 0hop  | 
						
						
							| 3 | 
							
								1 2
							 | 
							eqtrdi | 
							 |-  ( T = 0hop -> ( adjh ` T ) = 0hop )  | 
						
						
							| 4 | 
							
								
							 | 
							fveq2 | 
							 |-  ( ( adjh ` T ) = 0hop -> ( adjh ` ( adjh ` T ) ) = ( adjh ` 0hop ) )  | 
						
						
							| 5 | 
							
								
							 | 
							bdopssadj | 
							 |-  BndLinOp C_ dom adjh  | 
						
						
							| 6 | 
							
								
							 | 
							0bdop | 
							 |-  0hop e. BndLinOp  | 
						
						
							| 7 | 
							
								5 6
							 | 
							sselii | 
							 |-  0hop e. dom adjh  | 
						
						
							| 8 | 
							
								
							 | 
							eleq1 | 
							 |-  ( ( adjh ` T ) = 0hop -> ( ( adjh ` T ) e. dom adjh <-> 0hop e. dom adjh ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							mpbiri | 
							 |-  ( ( adjh ` T ) = 0hop -> ( adjh ` T ) e. dom adjh )  | 
						
						
							| 10 | 
							
								
							 | 
							dmadjrnb | 
							 |-  ( T e. dom adjh <-> ( adjh ` T ) e. dom adjh )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							sylibr | 
							 |-  ( ( adjh ` T ) = 0hop -> T e. dom adjh )  | 
						
						
							| 12 | 
							
								
							 | 
							adjadj | 
							 |-  ( T e. dom adjh -> ( adjh ` ( adjh ` T ) ) = T )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							syl | 
							 |-  ( ( adjh ` T ) = 0hop -> ( adjh ` ( adjh ` T ) ) = T )  | 
						
						
							| 14 | 
							
								2
							 | 
							a1i | 
							 |-  ( ( adjh ` T ) = 0hop -> ( adjh ` 0hop ) = 0hop )  | 
						
						
							| 15 | 
							
								4 13 14
							 | 
							3eqtr3d | 
							 |-  ( ( adjh ` T ) = 0hop -> T = 0hop )  | 
						
						
							| 16 | 
							
								3 15
							 | 
							impbii | 
							 |-  ( T = 0hop <-> ( adjh ` T ) = 0hop )  |