Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
|- ( T = 0hop -> ( adjh ` T ) = ( adjh ` 0hop ) ) |
2 |
|
adj0 |
|- ( adjh ` 0hop ) = 0hop |
3 |
1 2
|
eqtrdi |
|- ( T = 0hop -> ( adjh ` T ) = 0hop ) |
4 |
|
fveq2 |
|- ( ( adjh ` T ) = 0hop -> ( adjh ` ( adjh ` T ) ) = ( adjh ` 0hop ) ) |
5 |
|
bdopssadj |
|- BndLinOp C_ dom adjh |
6 |
|
0bdop |
|- 0hop e. BndLinOp |
7 |
5 6
|
sselii |
|- 0hop e. dom adjh |
8 |
|
eleq1 |
|- ( ( adjh ` T ) = 0hop -> ( ( adjh ` T ) e. dom adjh <-> 0hop e. dom adjh ) ) |
9 |
7 8
|
mpbiri |
|- ( ( adjh ` T ) = 0hop -> ( adjh ` T ) e. dom adjh ) |
10 |
|
dmadjrnb |
|- ( T e. dom adjh <-> ( adjh ` T ) e. dom adjh ) |
11 |
9 10
|
sylibr |
|- ( ( adjh ` T ) = 0hop -> T e. dom adjh ) |
12 |
|
adjadj |
|- ( T e. dom adjh -> ( adjh ` ( adjh ` T ) ) = T ) |
13 |
11 12
|
syl |
|- ( ( adjh ` T ) = 0hop -> ( adjh ` ( adjh ` T ) ) = T ) |
14 |
2
|
a1i |
|- ( ( adjh ` T ) = 0hop -> ( adjh ` 0hop ) = 0hop ) |
15 |
4 13 14
|
3eqtr3d |
|- ( ( adjh ` T ) = 0hop -> T = 0hop ) |
16 |
3 15
|
impbii |
|- ( T = 0hop <-> ( adjh ` T ) = 0hop ) |