Description: Every operator with an adjoint is linear. (Contributed by NM, 17-Jun-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | adjsslnop | |- dom adjh C_ LinOp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | adjadj | |- ( t e. dom adjh -> ( adjh ` ( adjh ` t ) ) = t ) |
|
2 | dmadjrn | |- ( t e. dom adjh -> ( adjh ` t ) e. dom adjh ) |
|
3 | adjlnop | |- ( ( adjh ` t ) e. dom adjh -> ( adjh ` ( adjh ` t ) ) e. LinOp ) |
|
4 | 2 3 | syl | |- ( t e. dom adjh -> ( adjh ` ( adjh ` t ) ) e. LinOp ) |
5 | 1 4 | eqeltrrd | |- ( t e. dom adjh -> t e. LinOp ) |
6 | 5 | ssriv | |- dom adjh C_ LinOp |