Step |
Hyp |
Ref |
Expression |
1 |
|
adjcl |
|- ( ( T e. dom adjh /\ A e. ~H ) -> ( ( adjh ` T ) ` A ) e. ~H ) |
2 |
|
eqcom |
|- ( ( ( T ` x ) .ih A ) = ( x .ih w ) <-> ( x .ih w ) = ( ( T ` x ) .ih A ) ) |
3 |
|
adj2 |
|- ( ( T e. dom adjh /\ x e. ~H /\ A e. ~H ) -> ( ( T ` x ) .ih A ) = ( x .ih ( ( adjh ` T ) ` A ) ) ) |
4 |
3
|
3com23 |
|- ( ( T e. dom adjh /\ A e. ~H /\ x e. ~H ) -> ( ( T ` x ) .ih A ) = ( x .ih ( ( adjh ` T ) ` A ) ) ) |
5 |
4
|
3expa |
|- ( ( ( T e. dom adjh /\ A e. ~H ) /\ x e. ~H ) -> ( ( T ` x ) .ih A ) = ( x .ih ( ( adjh ` T ) ` A ) ) ) |
6 |
5
|
eqeq2d |
|- ( ( ( T e. dom adjh /\ A e. ~H ) /\ x e. ~H ) -> ( ( x .ih w ) = ( ( T ` x ) .ih A ) <-> ( x .ih w ) = ( x .ih ( ( adjh ` T ) ` A ) ) ) ) |
7 |
2 6
|
syl5bb |
|- ( ( ( T e. dom adjh /\ A e. ~H ) /\ x e. ~H ) -> ( ( ( T ` x ) .ih A ) = ( x .ih w ) <-> ( x .ih w ) = ( x .ih ( ( adjh ` T ) ` A ) ) ) ) |
8 |
7
|
ralbidva |
|- ( ( T e. dom adjh /\ A e. ~H ) -> ( A. x e. ~H ( ( T ` x ) .ih A ) = ( x .ih w ) <-> A. x e. ~H ( x .ih w ) = ( x .ih ( ( adjh ` T ) ` A ) ) ) ) |
9 |
8
|
adantr |
|- ( ( ( T e. dom adjh /\ A e. ~H ) /\ w e. ~H ) -> ( A. x e. ~H ( ( T ` x ) .ih A ) = ( x .ih w ) <-> A. x e. ~H ( x .ih w ) = ( x .ih ( ( adjh ` T ) ` A ) ) ) ) |
10 |
|
simpr |
|- ( ( ( T e. dom adjh /\ A e. ~H ) /\ w e. ~H ) -> w e. ~H ) |
11 |
1
|
adantr |
|- ( ( ( T e. dom adjh /\ A e. ~H ) /\ w e. ~H ) -> ( ( adjh ` T ) ` A ) e. ~H ) |
12 |
|
hial2eq2 |
|- ( ( w e. ~H /\ ( ( adjh ` T ) ` A ) e. ~H ) -> ( A. x e. ~H ( x .ih w ) = ( x .ih ( ( adjh ` T ) ` A ) ) <-> w = ( ( adjh ` T ) ` A ) ) ) |
13 |
10 11 12
|
syl2anc |
|- ( ( ( T e. dom adjh /\ A e. ~H ) /\ w e. ~H ) -> ( A. x e. ~H ( x .ih w ) = ( x .ih ( ( adjh ` T ) ` A ) ) <-> w = ( ( adjh ` T ) ` A ) ) ) |
14 |
9 13
|
bitrd |
|- ( ( ( T e. dom adjh /\ A e. ~H ) /\ w e. ~H ) -> ( A. x e. ~H ( ( T ` x ) .ih A ) = ( x .ih w ) <-> w = ( ( adjh ` T ) ` A ) ) ) |
15 |
1 14
|
riota5 |
|- ( ( T e. dom adjh /\ A e. ~H ) -> ( iota_ w e. ~H A. x e. ~H ( ( T ` x ) .ih A ) = ( x .ih w ) ) = ( ( adjh ` T ) ` A ) ) |
16 |
15
|
eqcomd |
|- ( ( T e. dom adjh /\ A e. ~H ) -> ( ( adjh ` T ) ` A ) = ( iota_ w e. ~H A. x e. ~H ( ( T ` x ) .ih A ) = ( x .ih w ) ) ) |