Step |
Hyp |
Ref |
Expression |
1 |
|
reelprrecn |
|- RR e. { RR , CC } |
2 |
1
|
a1i |
|- ( T. -> RR e. { RR , CC } ) |
3 |
|
rpre |
|- ( x e. RR+ -> x e. RR ) |
4 |
3
|
adantl |
|- ( ( T. /\ x e. RR+ ) -> x e. RR ) |
5 |
4
|
recnd |
|- ( ( T. /\ x e. RR+ ) -> x e. CC ) |
6 |
|
1cnd |
|- ( ( T. /\ x e. RR+ ) -> 1 e. CC ) |
7 |
|
recn |
|- ( x e. RR -> x e. CC ) |
8 |
7
|
adantl |
|- ( ( T. /\ x e. RR ) -> x e. CC ) |
9 |
|
1red |
|- ( ( T. /\ x e. RR ) -> 1 e. RR ) |
10 |
2
|
dvmptid |
|- ( T. -> ( RR _D ( x e. RR |-> x ) ) = ( x e. RR |-> 1 ) ) |
11 |
|
rpssre |
|- RR+ C_ RR |
12 |
11
|
a1i |
|- ( T. -> RR+ C_ RR ) |
13 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
14 |
13
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
15 |
|
ioorp |
|- ( 0 (,) +oo ) = RR+ |
16 |
|
iooretop |
|- ( 0 (,) +oo ) e. ( topGen ` ran (,) ) |
17 |
15 16
|
eqeltrri |
|- RR+ e. ( topGen ` ran (,) ) |
18 |
17
|
a1i |
|- ( T. -> RR+ e. ( topGen ` ran (,) ) ) |
19 |
2 8 9 10 12 14 13 18
|
dvmptres |
|- ( T. -> ( RR _D ( x e. RR+ |-> x ) ) = ( x e. RR+ |-> 1 ) ) |
20 |
|
relogcl |
|- ( x e. RR+ -> ( log ` x ) e. RR ) |
21 |
20
|
adantl |
|- ( ( T. /\ x e. RR+ ) -> ( log ` x ) e. RR ) |
22 |
|
peano2rem |
|- ( ( log ` x ) e. RR -> ( ( log ` x ) - 1 ) e. RR ) |
23 |
21 22
|
syl |
|- ( ( T. /\ x e. RR+ ) -> ( ( log ` x ) - 1 ) e. RR ) |
24 |
23
|
recnd |
|- ( ( T. /\ x e. RR+ ) -> ( ( log ` x ) - 1 ) e. CC ) |
25 |
|
rpreccl |
|- ( x e. RR+ -> ( 1 / x ) e. RR+ ) |
26 |
25
|
adantl |
|- ( ( T. /\ x e. RR+ ) -> ( 1 / x ) e. RR+ ) |
27 |
26
|
rpcnd |
|- ( ( T. /\ x e. RR+ ) -> ( 1 / x ) e. CC ) |
28 |
21
|
recnd |
|- ( ( T. /\ x e. RR+ ) -> ( log ` x ) e. CC ) |
29 |
|
relogf1o |
|- ( log |` RR+ ) : RR+ -1-1-onto-> RR |
30 |
|
f1of |
|- ( ( log |` RR+ ) : RR+ -1-1-onto-> RR -> ( log |` RR+ ) : RR+ --> RR ) |
31 |
29 30
|
mp1i |
|- ( T. -> ( log |` RR+ ) : RR+ --> RR ) |
32 |
31
|
feqmptd |
|- ( T. -> ( log |` RR+ ) = ( x e. RR+ |-> ( ( log |` RR+ ) ` x ) ) ) |
33 |
|
fvres |
|- ( x e. RR+ -> ( ( log |` RR+ ) ` x ) = ( log ` x ) ) |
34 |
33
|
mpteq2ia |
|- ( x e. RR+ |-> ( ( log |` RR+ ) ` x ) ) = ( x e. RR+ |-> ( log ` x ) ) |
35 |
32 34
|
eqtrdi |
|- ( T. -> ( log |` RR+ ) = ( x e. RR+ |-> ( log ` x ) ) ) |
36 |
35
|
oveq2d |
|- ( T. -> ( RR _D ( log |` RR+ ) ) = ( RR _D ( x e. RR+ |-> ( log ` x ) ) ) ) |
37 |
|
dvrelog |
|- ( RR _D ( log |` RR+ ) ) = ( x e. RR+ |-> ( 1 / x ) ) |
38 |
36 37
|
eqtr3di |
|- ( T. -> ( RR _D ( x e. RR+ |-> ( log ` x ) ) ) = ( x e. RR+ |-> ( 1 / x ) ) ) |
39 |
|
0cnd |
|- ( ( T. /\ x e. RR+ ) -> 0 e. CC ) |
40 |
|
1cnd |
|- ( ( T. /\ x e. RR ) -> 1 e. CC ) |
41 |
|
0cnd |
|- ( ( T. /\ x e. RR ) -> 0 e. CC ) |
42 |
|
1cnd |
|- ( T. -> 1 e. CC ) |
43 |
2 42
|
dvmptc |
|- ( T. -> ( RR _D ( x e. RR |-> 1 ) ) = ( x e. RR |-> 0 ) ) |
44 |
2 40 41 43 12 14 13 18
|
dvmptres |
|- ( T. -> ( RR _D ( x e. RR+ |-> 1 ) ) = ( x e. RR+ |-> 0 ) ) |
45 |
2 28 27 38 6 39 44
|
dvmptsub |
|- ( T. -> ( RR _D ( x e. RR+ |-> ( ( log ` x ) - 1 ) ) ) = ( x e. RR+ |-> ( ( 1 / x ) - 0 ) ) ) |
46 |
27
|
subid1d |
|- ( ( T. /\ x e. RR+ ) -> ( ( 1 / x ) - 0 ) = ( 1 / x ) ) |
47 |
46
|
mpteq2dva |
|- ( T. -> ( x e. RR+ |-> ( ( 1 / x ) - 0 ) ) = ( x e. RR+ |-> ( 1 / x ) ) ) |
48 |
45 47
|
eqtrd |
|- ( T. -> ( RR _D ( x e. RR+ |-> ( ( log ` x ) - 1 ) ) ) = ( x e. RR+ |-> ( 1 / x ) ) ) |
49 |
2 5 6 19 24 27 48
|
dvmptmul |
|- ( T. -> ( RR _D ( x e. RR+ |-> ( x x. ( ( log ` x ) - 1 ) ) ) ) = ( x e. RR+ |-> ( ( 1 x. ( ( log ` x ) - 1 ) ) + ( ( 1 / x ) x. x ) ) ) ) |
50 |
24
|
mulid2d |
|- ( ( T. /\ x e. RR+ ) -> ( 1 x. ( ( log ` x ) - 1 ) ) = ( ( log ` x ) - 1 ) ) |
51 |
|
rpne0 |
|- ( x e. RR+ -> x =/= 0 ) |
52 |
51
|
adantl |
|- ( ( T. /\ x e. RR+ ) -> x =/= 0 ) |
53 |
5 52
|
recid2d |
|- ( ( T. /\ x e. RR+ ) -> ( ( 1 / x ) x. x ) = 1 ) |
54 |
50 53
|
oveq12d |
|- ( ( T. /\ x e. RR+ ) -> ( ( 1 x. ( ( log ` x ) - 1 ) ) + ( ( 1 / x ) x. x ) ) = ( ( ( log ` x ) - 1 ) + 1 ) ) |
55 |
|
ax-1cn |
|- 1 e. CC |
56 |
|
npcan |
|- ( ( ( log ` x ) e. CC /\ 1 e. CC ) -> ( ( ( log ` x ) - 1 ) + 1 ) = ( log ` x ) ) |
57 |
28 55 56
|
sylancl |
|- ( ( T. /\ x e. RR+ ) -> ( ( ( log ` x ) - 1 ) + 1 ) = ( log ` x ) ) |
58 |
54 57
|
eqtrd |
|- ( ( T. /\ x e. RR+ ) -> ( ( 1 x. ( ( log ` x ) - 1 ) ) + ( ( 1 / x ) x. x ) ) = ( log ` x ) ) |
59 |
58
|
mpteq2dva |
|- ( T. -> ( x e. RR+ |-> ( ( 1 x. ( ( log ` x ) - 1 ) ) + ( ( 1 / x ) x. x ) ) ) = ( x e. RR+ |-> ( log ` x ) ) ) |
60 |
49 59
|
eqtrd |
|- ( T. -> ( RR _D ( x e. RR+ |-> ( x x. ( ( log ` x ) - 1 ) ) ) ) = ( x e. RR+ |-> ( log ` x ) ) ) |
61 |
60
|
mptru |
|- ( RR _D ( x e. RR+ |-> ( x x. ( ( log ` x ) - 1 ) ) ) ) = ( x e. RR+ |-> ( log ` x ) ) |