Step |
Hyp |
Ref |
Expression |
1 |
|
fzfid |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( 0 ... N ) e. Fin ) |
2 |
|
rpcn |
|- ( x e. RR+ -> x e. CC ) |
3 |
2
|
adantl |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> x e. CC ) |
4 |
|
rpdivcl |
|- ( ( A e. RR+ /\ x e. RR+ ) -> ( A / x ) e. RR+ ) |
5 |
4
|
adantlr |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( A / x ) e. RR+ ) |
6 |
5
|
relogcld |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( log ` ( A / x ) ) e. RR ) |
7 |
|
elfznn0 |
|- ( k e. ( 0 ... N ) -> k e. NN0 ) |
8 |
|
reexpcl |
|- ( ( ( log ` ( A / x ) ) e. RR /\ k e. NN0 ) -> ( ( log ` ( A / x ) ) ^ k ) e. RR ) |
9 |
6 7 8
|
syl2an |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ k e. ( 0 ... N ) ) -> ( ( log ` ( A / x ) ) ^ k ) e. RR ) |
10 |
7
|
adantl |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ k e. ( 0 ... N ) ) -> k e. NN0 ) |
11 |
10
|
faccld |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ k e. ( 0 ... N ) ) -> ( ! ` k ) e. NN ) |
12 |
9 11
|
nndivred |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ k e. ( 0 ... N ) ) -> ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) e. RR ) |
13 |
12
|
recnd |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ k e. ( 0 ... N ) ) -> ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) e. CC ) |
14 |
1 3 13
|
fsummulc2 |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( x x. sum_ k e. ( 0 ... N ) ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) = sum_ k e. ( 0 ... N ) ( x x. ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) ) |
15 |
|
simplr |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> N e. NN0 ) |
16 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
17 |
15 16
|
eleqtrdi |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> N e. ( ZZ>= ` 0 ) ) |
18 |
3
|
adantr |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ k e. ( 0 ... N ) ) -> x e. CC ) |
19 |
18 13
|
mulcld |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ k e. ( 0 ... N ) ) -> ( x x. ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) e. CC ) |
20 |
|
oveq2 |
|- ( k = 0 -> ( ( log ` ( A / x ) ) ^ k ) = ( ( log ` ( A / x ) ) ^ 0 ) ) |
21 |
|
fveq2 |
|- ( k = 0 -> ( ! ` k ) = ( ! ` 0 ) ) |
22 |
|
fac0 |
|- ( ! ` 0 ) = 1 |
23 |
21 22
|
eqtrdi |
|- ( k = 0 -> ( ! ` k ) = 1 ) |
24 |
20 23
|
oveq12d |
|- ( k = 0 -> ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) = ( ( ( log ` ( A / x ) ) ^ 0 ) / 1 ) ) |
25 |
24
|
oveq2d |
|- ( k = 0 -> ( x x. ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) = ( x x. ( ( ( log ` ( A / x ) ) ^ 0 ) / 1 ) ) ) |
26 |
17 19 25
|
fsum1p |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> sum_ k e. ( 0 ... N ) ( x x. ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) = ( ( x x. ( ( ( log ` ( A / x ) ) ^ 0 ) / 1 ) ) + sum_ k e. ( ( 0 + 1 ) ... N ) ( x x. ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) ) ) |
27 |
6
|
recnd |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( log ` ( A / x ) ) e. CC ) |
28 |
27
|
exp0d |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( ( log ` ( A / x ) ) ^ 0 ) = 1 ) |
29 |
28
|
oveq1d |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( ( ( log ` ( A / x ) ) ^ 0 ) / 1 ) = ( 1 / 1 ) ) |
30 |
|
1div1e1 |
|- ( 1 / 1 ) = 1 |
31 |
29 30
|
eqtrdi |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( ( ( log ` ( A / x ) ) ^ 0 ) / 1 ) = 1 ) |
32 |
31
|
oveq2d |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( x x. ( ( ( log ` ( A / x ) ) ^ 0 ) / 1 ) ) = ( x x. 1 ) ) |
33 |
3
|
mulid1d |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( x x. 1 ) = x ) |
34 |
32 33
|
eqtrd |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( x x. ( ( ( log ` ( A / x ) ) ^ 0 ) / 1 ) ) = x ) |
35 |
|
1zzd |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> 1 e. ZZ ) |
36 |
|
nn0z |
|- ( N e. NN0 -> N e. ZZ ) |
37 |
36
|
ad2antlr |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> N e. ZZ ) |
38 |
|
fz1ssfz0 |
|- ( 1 ... N ) C_ ( 0 ... N ) |
39 |
38
|
sseli |
|- ( k e. ( 1 ... N ) -> k e. ( 0 ... N ) ) |
40 |
39 19
|
sylan2 |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ k e. ( 1 ... N ) ) -> ( x x. ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) e. CC ) |
41 |
|
oveq2 |
|- ( k = ( j + 1 ) -> ( ( log ` ( A / x ) ) ^ k ) = ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) ) |
42 |
|
fveq2 |
|- ( k = ( j + 1 ) -> ( ! ` k ) = ( ! ` ( j + 1 ) ) ) |
43 |
41 42
|
oveq12d |
|- ( k = ( j + 1 ) -> ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) = ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) |
44 |
43
|
oveq2d |
|- ( k = ( j + 1 ) -> ( x x. ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) = ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) ) |
45 |
35 35 37 40 44
|
fsumshftm |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> sum_ k e. ( 1 ... N ) ( x x. ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) = sum_ j e. ( ( 1 - 1 ) ... ( N - 1 ) ) ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) ) |
46 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
47 |
46
|
oveq1i |
|- ( ( 0 + 1 ) ... N ) = ( 1 ... N ) |
48 |
47
|
sumeq1i |
|- sum_ k e. ( ( 0 + 1 ) ... N ) ( x x. ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) = sum_ k e. ( 1 ... N ) ( x x. ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) |
49 |
48
|
a1i |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> sum_ k e. ( ( 0 + 1 ) ... N ) ( x x. ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) = sum_ k e. ( 1 ... N ) ( x x. ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) ) |
50 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
51 |
50
|
oveq1i |
|- ( ( 1 - 1 ) ..^ N ) = ( 0 ..^ N ) |
52 |
|
fzoval |
|- ( N e. ZZ -> ( ( 1 - 1 ) ..^ N ) = ( ( 1 - 1 ) ... ( N - 1 ) ) ) |
53 |
37 52
|
syl |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( ( 1 - 1 ) ..^ N ) = ( ( 1 - 1 ) ... ( N - 1 ) ) ) |
54 |
51 53
|
eqtr3id |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( 0 ..^ N ) = ( ( 1 - 1 ) ... ( N - 1 ) ) ) |
55 |
54
|
sumeq1d |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> sum_ j e. ( 0 ..^ N ) ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) = sum_ j e. ( ( 1 - 1 ) ... ( N - 1 ) ) ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) ) |
56 |
45 49 55
|
3eqtr4d |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> sum_ k e. ( ( 0 + 1 ) ... N ) ( x x. ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) = sum_ j e. ( 0 ..^ N ) ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) ) |
57 |
34 56
|
oveq12d |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( ( x x. ( ( ( log ` ( A / x ) ) ^ 0 ) / 1 ) ) + sum_ k e. ( ( 0 + 1 ) ... N ) ( x x. ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) ) = ( x + sum_ j e. ( 0 ..^ N ) ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) ) ) |
58 |
14 26 57
|
3eqtrd |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( x x. sum_ k e. ( 0 ... N ) ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) = ( x + sum_ j e. ( 0 ..^ N ) ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) ) ) |
59 |
58
|
mpteq2dva |
|- ( ( A e. RR+ /\ N e. NN0 ) -> ( x e. RR+ |-> ( x x. sum_ k e. ( 0 ... N ) ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) ) = ( x e. RR+ |-> ( x + sum_ j e. ( 0 ..^ N ) ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) ) ) ) |
60 |
59
|
oveq2d |
|- ( ( A e. RR+ /\ N e. NN0 ) -> ( RR _D ( x e. RR+ |-> ( x x. sum_ k e. ( 0 ... N ) ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) ) ) = ( RR _D ( x e. RR+ |-> ( x + sum_ j e. ( 0 ..^ N ) ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) ) ) ) ) |
61 |
|
reelprrecn |
|- RR e. { RR , CC } |
62 |
61
|
a1i |
|- ( ( A e. RR+ /\ N e. NN0 ) -> RR e. { RR , CC } ) |
63 |
|
1cnd |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> 1 e. CC ) |
64 |
|
recn |
|- ( x e. RR -> x e. CC ) |
65 |
64
|
adantl |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR ) -> x e. CC ) |
66 |
|
1cnd |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR ) -> 1 e. CC ) |
67 |
62
|
dvmptid |
|- ( ( A e. RR+ /\ N e. NN0 ) -> ( RR _D ( x e. RR |-> x ) ) = ( x e. RR |-> 1 ) ) |
68 |
|
rpssre |
|- RR+ C_ RR |
69 |
68
|
a1i |
|- ( ( A e. RR+ /\ N e. NN0 ) -> RR+ C_ RR ) |
70 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
71 |
70
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
72 |
|
ioorp |
|- ( 0 (,) +oo ) = RR+ |
73 |
|
iooretop |
|- ( 0 (,) +oo ) e. ( topGen ` ran (,) ) |
74 |
72 73
|
eqeltrri |
|- RR+ e. ( topGen ` ran (,) ) |
75 |
74
|
a1i |
|- ( ( A e. RR+ /\ N e. NN0 ) -> RR+ e. ( topGen ` ran (,) ) ) |
76 |
62 65 66 67 69 71 70 75
|
dvmptres |
|- ( ( A e. RR+ /\ N e. NN0 ) -> ( RR _D ( x e. RR+ |-> x ) ) = ( x e. RR+ |-> 1 ) ) |
77 |
|
fzofi |
|- ( 0 ..^ N ) e. Fin |
78 |
77
|
a1i |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( 0 ..^ N ) e. Fin ) |
79 |
3
|
adantr |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> x e. CC ) |
80 |
|
elfzonn0 |
|- ( j e. ( 0 ..^ N ) -> j e. NN0 ) |
81 |
|
peano2nn0 |
|- ( j e. NN0 -> ( j + 1 ) e. NN0 ) |
82 |
80 81
|
syl |
|- ( j e. ( 0 ..^ N ) -> ( j + 1 ) e. NN0 ) |
83 |
|
reexpcl |
|- ( ( ( log ` ( A / x ) ) e. RR /\ ( j + 1 ) e. NN0 ) -> ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) e. RR ) |
84 |
6 82 83
|
syl2an |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) e. RR ) |
85 |
82
|
adantl |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( j + 1 ) e. NN0 ) |
86 |
85
|
faccld |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( ! ` ( j + 1 ) ) e. NN ) |
87 |
84 86
|
nndivred |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) e. RR ) |
88 |
87
|
recnd |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) e. CC ) |
89 |
79 88
|
mulcld |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) e. CC ) |
90 |
78 89
|
fsumcl |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> sum_ j e. ( 0 ..^ N ) ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) e. CC ) |
91 |
6 15
|
reexpcld |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( ( log ` ( A / x ) ) ^ N ) e. RR ) |
92 |
|
faccl |
|- ( N e. NN0 -> ( ! ` N ) e. NN ) |
93 |
92
|
ad2antlr |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( ! ` N ) e. NN ) |
94 |
91 93
|
nndivred |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) e. RR ) |
95 |
94
|
recnd |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) e. CC ) |
96 |
|
ax-1cn |
|- 1 e. CC |
97 |
|
subcl |
|- ( ( ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) e. CC /\ 1 e. CC ) -> ( ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) - 1 ) e. CC ) |
98 |
95 96 97
|
sylancl |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) - 1 ) e. CC ) |
99 |
77
|
a1i |
|- ( ( A e. RR+ /\ N e. NN0 ) -> ( 0 ..^ N ) e. Fin ) |
100 |
89
|
an32s |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) e. CC ) |
101 |
100
|
3impa |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) /\ x e. RR+ ) -> ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) e. CC ) |
102 |
|
reexpcl |
|- ( ( ( log ` ( A / x ) ) e. RR /\ j e. NN0 ) -> ( ( log ` ( A / x ) ) ^ j ) e. RR ) |
103 |
6 80 102
|
syl2an |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( ( log ` ( A / x ) ) ^ j ) e. RR ) |
104 |
80
|
adantl |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> j e. NN0 ) |
105 |
104
|
faccld |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( ! ` j ) e. NN ) |
106 |
103 105
|
nndivred |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) e. RR ) |
107 |
106
|
recnd |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) e. CC ) |
108 |
88 107
|
subcld |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) - ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) e. CC ) |
109 |
108
|
an32s |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> ( ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) - ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) e. CC ) |
110 |
109
|
3impa |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) /\ x e. RR+ ) -> ( ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) - ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) e. CC ) |
111 |
61
|
a1i |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> RR e. { RR , CC } ) |
112 |
2
|
adantl |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> x e. CC ) |
113 |
|
1cnd |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> 1 e. CC ) |
114 |
76
|
adantr |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( RR _D ( x e. RR+ |-> x ) ) = ( x e. RR+ |-> 1 ) ) |
115 |
88
|
an32s |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) e. CC ) |
116 |
|
negex |
|- -u ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) e. _V |
117 |
116
|
a1i |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> -u ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) e. _V ) |
118 |
|
cnelprrecn |
|- CC e. { RR , CC } |
119 |
118
|
a1i |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> CC e. { RR , CC } ) |
120 |
27
|
adantlr |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> ( log ` ( A / x ) ) e. CC ) |
121 |
|
negex |
|- -u ( 1 / x ) e. _V |
122 |
121
|
a1i |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> -u ( 1 / x ) e. _V ) |
123 |
|
id |
|- ( y e. CC -> y e. CC ) |
124 |
80
|
adantl |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> j e. NN0 ) |
125 |
124 81
|
syl |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( j + 1 ) e. NN0 ) |
126 |
|
expcl |
|- ( ( y e. CC /\ ( j + 1 ) e. NN0 ) -> ( y ^ ( j + 1 ) ) e. CC ) |
127 |
123 125 126
|
syl2anr |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( y ^ ( j + 1 ) ) e. CC ) |
128 |
125
|
faccld |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( ! ` ( j + 1 ) ) e. NN ) |
129 |
128
|
nncnd |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( ! ` ( j + 1 ) ) e. CC ) |
130 |
129
|
adantr |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( ! ` ( j + 1 ) ) e. CC ) |
131 |
128
|
nnne0d |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( ! ` ( j + 1 ) ) =/= 0 ) |
132 |
131
|
adantr |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( ! ` ( j + 1 ) ) =/= 0 ) |
133 |
127 130 132
|
divcld |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( ( y ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) e. CC ) |
134 |
|
expcl |
|- ( ( y e. CC /\ j e. NN0 ) -> ( y ^ j ) e. CC ) |
135 |
123 124 134
|
syl2anr |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( y ^ j ) e. CC ) |
136 |
124
|
faccld |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( ! ` j ) e. NN ) |
137 |
136
|
nncnd |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( ! ` j ) e. CC ) |
138 |
137
|
adantr |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( ! ` j ) e. CC ) |
139 |
124
|
adantr |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> j e. NN0 ) |
140 |
139
|
faccld |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( ! ` j ) e. NN ) |
141 |
140
|
nnne0d |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( ! ` j ) =/= 0 ) |
142 |
135 138 141
|
divcld |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( ( y ^ j ) / ( ! ` j ) ) e. CC ) |
143 |
|
simplll |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> A e. RR+ ) |
144 |
|
simpr |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> x e. RR+ ) |
145 |
143 144
|
relogdivd |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> ( log ` ( A / x ) ) = ( ( log ` A ) - ( log ` x ) ) ) |
146 |
145
|
mpteq2dva |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( x e. RR+ |-> ( log ` ( A / x ) ) ) = ( x e. RR+ |-> ( ( log ` A ) - ( log ` x ) ) ) ) |
147 |
146
|
oveq2d |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( RR _D ( x e. RR+ |-> ( log ` ( A / x ) ) ) ) = ( RR _D ( x e. RR+ |-> ( ( log ` A ) - ( log ` x ) ) ) ) ) |
148 |
|
relogcl |
|- ( A e. RR+ -> ( log ` A ) e. RR ) |
149 |
148
|
ad2antrr |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( log ` A ) e. RR ) |
150 |
149
|
recnd |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( log ` A ) e. CC ) |
151 |
150
|
adantr |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> ( log ` A ) e. CC ) |
152 |
|
0cnd |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> 0 e. CC ) |
153 |
150
|
adantr |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR ) -> ( log ` A ) e. CC ) |
154 |
|
0cnd |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR ) -> 0 e. CC ) |
155 |
111 150
|
dvmptc |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( RR _D ( x e. RR |-> ( log ` A ) ) ) = ( x e. RR |-> 0 ) ) |
156 |
68
|
a1i |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> RR+ C_ RR ) |
157 |
74
|
a1i |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> RR+ e. ( topGen ` ran (,) ) ) |
158 |
111 153 154 155 156 71 70 157
|
dvmptres |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( RR _D ( x e. RR+ |-> ( log ` A ) ) ) = ( x e. RR+ |-> 0 ) ) |
159 |
144
|
relogcld |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> ( log ` x ) e. RR ) |
160 |
159
|
recnd |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> ( log ` x ) e. CC ) |
161 |
144
|
rpreccld |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> ( 1 / x ) e. RR+ ) |
162 |
|
relogf1o |
|- ( log |` RR+ ) : RR+ -1-1-onto-> RR |
163 |
|
f1of |
|- ( ( log |` RR+ ) : RR+ -1-1-onto-> RR -> ( log |` RR+ ) : RR+ --> RR ) |
164 |
162 163
|
mp1i |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( log |` RR+ ) : RR+ --> RR ) |
165 |
164
|
feqmptd |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( log |` RR+ ) = ( x e. RR+ |-> ( ( log |` RR+ ) ` x ) ) ) |
166 |
|
fvres |
|- ( x e. RR+ -> ( ( log |` RR+ ) ` x ) = ( log ` x ) ) |
167 |
166
|
mpteq2ia |
|- ( x e. RR+ |-> ( ( log |` RR+ ) ` x ) ) = ( x e. RR+ |-> ( log ` x ) ) |
168 |
165 167
|
eqtrdi |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( log |` RR+ ) = ( x e. RR+ |-> ( log ` x ) ) ) |
169 |
168
|
oveq2d |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( RR _D ( log |` RR+ ) ) = ( RR _D ( x e. RR+ |-> ( log ` x ) ) ) ) |
170 |
|
dvrelog |
|- ( RR _D ( log |` RR+ ) ) = ( x e. RR+ |-> ( 1 / x ) ) |
171 |
169 170
|
eqtr3di |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( RR _D ( x e. RR+ |-> ( log ` x ) ) ) = ( x e. RR+ |-> ( 1 / x ) ) ) |
172 |
111 151 152 158 160 161 171
|
dvmptsub |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( RR _D ( x e. RR+ |-> ( ( log ` A ) - ( log ` x ) ) ) ) = ( x e. RR+ |-> ( 0 - ( 1 / x ) ) ) ) |
173 |
147 172
|
eqtrd |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( RR _D ( x e. RR+ |-> ( log ` ( A / x ) ) ) ) = ( x e. RR+ |-> ( 0 - ( 1 / x ) ) ) ) |
174 |
|
df-neg |
|- -u ( 1 / x ) = ( 0 - ( 1 / x ) ) |
175 |
174
|
mpteq2i |
|- ( x e. RR+ |-> -u ( 1 / x ) ) = ( x e. RR+ |-> ( 0 - ( 1 / x ) ) ) |
176 |
173 175
|
eqtr4di |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( RR _D ( x e. RR+ |-> ( log ` ( A / x ) ) ) ) = ( x e. RR+ |-> -u ( 1 / x ) ) ) |
177 |
|
ovexd |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( ( j + 1 ) x. ( y ^ ( ( j + 1 ) - 1 ) ) ) e. _V ) |
178 |
|
nn0p1nn |
|- ( j e. NN0 -> ( j + 1 ) e. NN ) |
179 |
124 178
|
syl |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( j + 1 ) e. NN ) |
180 |
|
dvexp |
|- ( ( j + 1 ) e. NN -> ( CC _D ( y e. CC |-> ( y ^ ( j + 1 ) ) ) ) = ( y e. CC |-> ( ( j + 1 ) x. ( y ^ ( ( j + 1 ) - 1 ) ) ) ) ) |
181 |
179 180
|
syl |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( CC _D ( y e. CC |-> ( y ^ ( j + 1 ) ) ) ) = ( y e. CC |-> ( ( j + 1 ) x. ( y ^ ( ( j + 1 ) - 1 ) ) ) ) ) |
182 |
119 127 177 181 129 131
|
dvmptdivc |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( CC _D ( y e. CC |-> ( ( y ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) ) = ( y e. CC |-> ( ( ( j + 1 ) x. ( y ^ ( ( j + 1 ) - 1 ) ) ) / ( ! ` ( j + 1 ) ) ) ) ) |
183 |
124
|
nn0cnd |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> j e. CC ) |
184 |
183
|
adantr |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> j e. CC ) |
185 |
|
pncan |
|- ( ( j e. CC /\ 1 e. CC ) -> ( ( j + 1 ) - 1 ) = j ) |
186 |
184 96 185
|
sylancl |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( ( j + 1 ) - 1 ) = j ) |
187 |
186
|
oveq2d |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( y ^ ( ( j + 1 ) - 1 ) ) = ( y ^ j ) ) |
188 |
187
|
oveq2d |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( ( j + 1 ) x. ( y ^ ( ( j + 1 ) - 1 ) ) ) = ( ( j + 1 ) x. ( y ^ j ) ) ) |
189 |
|
facp1 |
|- ( j e. NN0 -> ( ! ` ( j + 1 ) ) = ( ( ! ` j ) x. ( j + 1 ) ) ) |
190 |
139 189
|
syl |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( ! ` ( j + 1 ) ) = ( ( ! ` j ) x. ( j + 1 ) ) ) |
191 |
|
peano2cn |
|- ( j e. CC -> ( j + 1 ) e. CC ) |
192 |
184 191
|
syl |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( j + 1 ) e. CC ) |
193 |
138 192
|
mulcomd |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( ( ! ` j ) x. ( j + 1 ) ) = ( ( j + 1 ) x. ( ! ` j ) ) ) |
194 |
190 193
|
eqtrd |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( ! ` ( j + 1 ) ) = ( ( j + 1 ) x. ( ! ` j ) ) ) |
195 |
188 194
|
oveq12d |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( ( ( j + 1 ) x. ( y ^ ( ( j + 1 ) - 1 ) ) ) / ( ! ` ( j + 1 ) ) ) = ( ( ( j + 1 ) x. ( y ^ j ) ) / ( ( j + 1 ) x. ( ! ` j ) ) ) ) |
196 |
179
|
nnne0d |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( j + 1 ) =/= 0 ) |
197 |
196
|
adantr |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( j + 1 ) =/= 0 ) |
198 |
135 138 192 141 197
|
divcan5d |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( ( ( j + 1 ) x. ( y ^ j ) ) / ( ( j + 1 ) x. ( ! ` j ) ) ) = ( ( y ^ j ) / ( ! ` j ) ) ) |
199 |
195 198
|
eqtrd |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( ( ( j + 1 ) x. ( y ^ ( ( j + 1 ) - 1 ) ) ) / ( ! ` ( j + 1 ) ) ) = ( ( y ^ j ) / ( ! ` j ) ) ) |
200 |
199
|
mpteq2dva |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( y e. CC |-> ( ( ( j + 1 ) x. ( y ^ ( ( j + 1 ) - 1 ) ) ) / ( ! ` ( j + 1 ) ) ) ) = ( y e. CC |-> ( ( y ^ j ) / ( ! ` j ) ) ) ) |
201 |
182 200
|
eqtrd |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( CC _D ( y e. CC |-> ( ( y ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) ) = ( y e. CC |-> ( ( y ^ j ) / ( ! ` j ) ) ) ) |
202 |
|
oveq1 |
|- ( y = ( log ` ( A / x ) ) -> ( y ^ ( j + 1 ) ) = ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) ) |
203 |
202
|
oveq1d |
|- ( y = ( log ` ( A / x ) ) -> ( ( y ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) = ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) |
204 |
|
oveq1 |
|- ( y = ( log ` ( A / x ) ) -> ( y ^ j ) = ( ( log ` ( A / x ) ) ^ j ) ) |
205 |
204
|
oveq1d |
|- ( y = ( log ` ( A / x ) ) -> ( ( y ^ j ) / ( ! ` j ) ) = ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) |
206 |
111 119 120 122 133 142 176 201 203 205
|
dvmptco |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( RR _D ( x e. RR+ |-> ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) ) = ( x e. RR+ |-> ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) x. -u ( 1 / x ) ) ) ) |
207 |
107
|
an32s |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) e. CC ) |
208 |
161
|
rpcnd |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> ( 1 / x ) e. CC ) |
209 |
207 208
|
mulneg2d |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) x. -u ( 1 / x ) ) = -u ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) x. ( 1 / x ) ) ) |
210 |
|
rpne0 |
|- ( x e. RR+ -> x =/= 0 ) |
211 |
210
|
adantl |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> x =/= 0 ) |
212 |
207 112 211
|
divrecd |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) = ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) x. ( 1 / x ) ) ) |
213 |
212
|
negeqd |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> -u ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) = -u ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) x. ( 1 / x ) ) ) |
214 |
209 213
|
eqtr4d |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) x. -u ( 1 / x ) ) = -u ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) ) |
215 |
214
|
mpteq2dva |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( x e. RR+ |-> ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) x. -u ( 1 / x ) ) ) = ( x e. RR+ |-> -u ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) ) ) |
216 |
206 215
|
eqtrd |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( RR _D ( x e. RR+ |-> ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) ) = ( x e. RR+ |-> -u ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) ) ) |
217 |
111 112 113 114 115 117 216
|
dvmptmul |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( RR _D ( x e. RR+ |-> ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) ) ) = ( x e. RR+ |-> ( ( 1 x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) + ( -u ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) x. x ) ) ) ) |
218 |
88
|
mulid2d |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( 1 x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) = ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) |
219 |
|
simplr |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> x e. RR+ ) |
220 |
106 219
|
rerpdivcld |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) e. RR ) |
221 |
220
|
recnd |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) e. CC ) |
222 |
221 79
|
mulneg1d |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( -u ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) x. x ) = -u ( ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) x. x ) ) |
223 |
211
|
an32s |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> x =/= 0 ) |
224 |
107 79 223
|
divcan1d |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) x. x ) = ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) |
225 |
224
|
negeqd |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> -u ( ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) x. x ) = -u ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) |
226 |
222 225
|
eqtrd |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( -u ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) x. x ) = -u ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) |
227 |
218 226
|
oveq12d |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( ( 1 x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) + ( -u ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) x. x ) ) = ( ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) + -u ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) ) |
228 |
88 107
|
negsubd |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) + -u ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) = ( ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) - ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) ) |
229 |
227 228
|
eqtrd |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( ( 1 x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) + ( -u ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) x. x ) ) = ( ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) - ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) ) |
230 |
229
|
an32s |
|- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> ( ( 1 x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) + ( -u ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) x. x ) ) = ( ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) - ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) ) |
231 |
230
|
mpteq2dva |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( x e. RR+ |-> ( ( 1 x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) + ( -u ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) x. x ) ) ) = ( x e. RR+ |-> ( ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) - ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) ) ) |
232 |
217 231
|
eqtrd |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( RR _D ( x e. RR+ |-> ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) ) ) = ( x e. RR+ |-> ( ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) - ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) ) ) |
233 |
71 70 62 75 99 101 110 232
|
dvmptfsum |
|- ( ( A e. RR+ /\ N e. NN0 ) -> ( RR _D ( x e. RR+ |-> sum_ j e. ( 0 ..^ N ) ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) ) ) = ( x e. RR+ |-> sum_ j e. ( 0 ..^ N ) ( ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) - ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) ) ) |
234 |
|
oveq2 |
|- ( k = j -> ( ( log ` ( A / x ) ) ^ k ) = ( ( log ` ( A / x ) ) ^ j ) ) |
235 |
|
fveq2 |
|- ( k = j -> ( ! ` k ) = ( ! ` j ) ) |
236 |
234 235
|
oveq12d |
|- ( k = j -> ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) = ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) |
237 |
|
oveq2 |
|- ( k = N -> ( ( log ` ( A / x ) ) ^ k ) = ( ( log ` ( A / x ) ) ^ N ) ) |
238 |
|
fveq2 |
|- ( k = N -> ( ! ` k ) = ( ! ` N ) ) |
239 |
237 238
|
oveq12d |
|- ( k = N -> ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) = ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) ) |
240 |
236 43 24 239 17 13
|
telfsumo2 |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> sum_ j e. ( 0 ..^ N ) ( ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) - ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) = ( ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) - ( ( ( log ` ( A / x ) ) ^ 0 ) / 1 ) ) ) |
241 |
31
|
oveq2d |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) - ( ( ( log ` ( A / x ) ) ^ 0 ) / 1 ) ) = ( ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) - 1 ) ) |
242 |
240 241
|
eqtrd |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> sum_ j e. ( 0 ..^ N ) ( ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) - ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) = ( ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) - 1 ) ) |
243 |
242
|
mpteq2dva |
|- ( ( A e. RR+ /\ N e. NN0 ) -> ( x e. RR+ |-> sum_ j e. ( 0 ..^ N ) ( ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) - ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) ) = ( x e. RR+ |-> ( ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) - 1 ) ) ) |
244 |
233 243
|
eqtrd |
|- ( ( A e. RR+ /\ N e. NN0 ) -> ( RR _D ( x e. RR+ |-> sum_ j e. ( 0 ..^ N ) ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) ) ) = ( x e. RR+ |-> ( ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) - 1 ) ) ) |
245 |
62 3 63 76 90 98 244
|
dvmptadd |
|- ( ( A e. RR+ /\ N e. NN0 ) -> ( RR _D ( x e. RR+ |-> ( x + sum_ j e. ( 0 ..^ N ) ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) ) ) ) = ( x e. RR+ |-> ( 1 + ( ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) - 1 ) ) ) ) |
246 |
|
pncan3 |
|- ( ( 1 e. CC /\ ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) e. CC ) -> ( 1 + ( ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) - 1 ) ) = ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) ) |
247 |
96 95 246
|
sylancr |
|- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( 1 + ( ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) - 1 ) ) = ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) ) |
248 |
247
|
mpteq2dva |
|- ( ( A e. RR+ /\ N e. NN0 ) -> ( x e. RR+ |-> ( 1 + ( ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) - 1 ) ) ) = ( x e. RR+ |-> ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) ) ) |
249 |
60 245 248
|
3eqtrd |
|- ( ( A e. RR+ /\ N e. NN0 ) -> ( RR _D ( x e. RR+ |-> ( x x. sum_ k e. ( 0 ... N ) ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) ) ) = ( x e. RR+ |-> ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) ) ) |