Metamath Proof Explorer


Theorem aecom-o

Description: Commutation law for identical variable specifiers. The antecedent and consequent are true when x and y are substituted with the same variable. Lemma L12 in Megill p. 445 (p. 12 of the preprint). Version of aecom using ax-c11 . Unlike axc11nfromc11 , this version does not require ax-5 (see comment of equcomi1 ). (Contributed by NM, 10-May-1993) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion aecom-o
|- ( A. x x = y -> A. y y = x )

Proof

Step Hyp Ref Expression
1 ax-c11
 |-  ( A. x x = y -> ( A. x x = y -> A. y x = y ) )
2 1 pm2.43i
 |-  ( A. x x = y -> A. y x = y )
3 equcomi1
 |-  ( x = y -> y = x )
4 3 alimi
 |-  ( A. y x = y -> A. y y = x )
5 2 4 syl
 |-  ( A. x x = y -> A. y y = x )