Metamath Proof Explorer


Theorem aecoms-o

Description: A commutation rule for identical variable specifiers. Version of aecoms using ax-c11 . (Contributed by NM, 10-May-1993) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis alequcoms-o.1
|- ( A. x x = y -> ph )
Assertion aecoms-o
|- ( A. y y = x -> ph )

Proof

Step Hyp Ref Expression
1 alequcoms-o.1
 |-  ( A. x x = y -> ph )
2 aecom-o
 |-  ( A. y y = x -> A. x x = y )
3 2 1 syl
 |-  ( A. y y = x -> ph )