Step |
Hyp |
Ref |
Expression |
1 |
|
hbae-o |
|- ( A. x x = y -> A. z A. x x = y ) |
2 |
|
hbae-o |
|- ( A. x x = y -> A. t A. x x = y ) |
3 |
|
ax7 |
|- ( x = t -> ( x = y -> t = y ) ) |
4 |
3
|
spimvw |
|- ( A. x x = y -> t = y ) |
5 |
2 4
|
alrimih |
|- ( A. x x = y -> A. t t = y ) |
6 |
|
ax7 |
|- ( y = u -> ( y = t -> u = t ) ) |
7 |
|
equcomi |
|- ( u = t -> t = u ) |
8 |
6 7
|
syl6 |
|- ( y = u -> ( y = t -> t = u ) ) |
9 |
8
|
spimvw |
|- ( A. y y = t -> t = u ) |
10 |
9
|
aecoms-o |
|- ( A. t t = y -> t = u ) |
11 |
10
|
axc4i-o |
|- ( A. t t = y -> A. t t = u ) |
12 |
|
hbae-o |
|- ( A. t t = u -> A. v A. t t = u ) |
13 |
|
ax7 |
|- ( t = v -> ( t = u -> v = u ) ) |
14 |
13
|
spimvw |
|- ( A. t t = u -> v = u ) |
15 |
12 14
|
alrimih |
|- ( A. t t = u -> A. v v = u ) |
16 |
|
aecom-o |
|- ( A. v v = u -> A. u u = v ) |
17 |
11 15 16
|
3syl |
|- ( A. t t = y -> A. u u = v ) |
18 |
|
ax7 |
|- ( u = w -> ( u = v -> w = v ) ) |
19 |
18
|
spimvw |
|- ( A. u u = v -> w = v ) |
20 |
5 17 19
|
3syl |
|- ( A. x x = y -> w = v ) |
21 |
1 20
|
alrimih |
|- ( A. x x = y -> A. z w = v ) |