Metamath Proof Explorer


Theorem aevdemo

Description: Proof illustrating the comment of aev2 . (Contributed by BJ, 30-Mar-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion aevdemo
|- ( A. x x = y -> ( ( E. a A. b c = d \/ E. e f = g ) /\ A. h ( i = j -> k = l ) ) )

Proof

Step Hyp Ref Expression
1 aev
 |-  ( A. x x = y -> A. e f = g )
2 1 19.2d
 |-  ( A. x x = y -> E. e f = g )
3 2 olcd
 |-  ( A. x x = y -> ( E. a A. b c = d \/ E. e f = g ) )
4 aev
 |-  ( A. x x = y -> A. m m = n )
5 aeveq
 |-  ( A. m m = n -> k = l )
6 5 a1d
 |-  ( A. m m = n -> ( i = j -> k = l ) )
7 6 alrimiv
 |-  ( A. m m = n -> A. h ( i = j -> k = l ) )
8 4 7 syl
 |-  ( A. x x = y -> A. h ( i = j -> k = l ) )
9 3 8 jca
 |-  ( A. x x = y -> ( ( E. a A. b c = d \/ E. e f = g ) /\ A. h ( i = j -> k = l ) ) )