Metamath Proof Explorer


Theorem aeveq

Description: The antecedent A. x x = y with a disjoint variable condition (typical of a one-object universe) forces equality of everything. (Contributed by Wolf Lammen, 19-Mar-2021)

Ref Expression
Assertion aeveq
|- ( A. x x = y -> z = t )

Proof

Step Hyp Ref Expression
1 aevlem
 |-  ( A. x x = y -> A. u u = z )
2 ax6ev
 |-  E. u u = t
3 ax7
 |-  ( u = z -> ( u = t -> z = t ) )
4 3 aleximi
 |-  ( A. u u = z -> ( E. u u = t -> E. u z = t ) )
5 2 4 mpi
 |-  ( A. u u = z -> E. u z = t )
6 ax5e
 |-  ( E. u z = t -> z = t )
7 1 5 6 3syl
 |-  ( A. x x = y -> z = t )