Metamath Proof Explorer


Theorem aevlem0

Description: Lemma for aevlem . Instance of aev . (Contributed by NM, 8-Jul-2016) (Proof shortened by Wolf Lammen, 17-Feb-2018) Remove dependency on ax-12 . (Revised by Wolf Lammen, 14-Mar-2021) (Revised by BJ, 29-Mar-2021) (Proof shortened by Wolf Lammen, 30-Mar-2021)

Ref Expression
Assertion aevlem0
|- ( A. x x = y -> A. z z = x )

Proof

Step Hyp Ref Expression
1 spaev
 |-  ( A. x x = y -> x = y )
2 1 alrimiv
 |-  ( A. x x = y -> A. z x = y )
3 cbvaev
 |-  ( A. x x = y -> A. z z = y )
4 equeuclr
 |-  ( x = y -> ( z = y -> z = x ) )
5 4 al2imi
 |-  ( A. z x = y -> ( A. z z = y -> A. z z = x ) )
6 2 3 5 sylc
 |-  ( A. x x = y -> A. z z = x )