| Step |
Hyp |
Ref |
Expression |
| 1 |
|
affinecomb1.a |
|- ( ph -> A e. RR ) |
| 2 |
|
affinecomb1.b |
|- ( ph -> B e. RR ) |
| 3 |
|
affinecomb1.c |
|- ( ph -> C e. RR ) |
| 4 |
|
affinecomb1.d |
|- ( ph -> B =/= C ) |
| 5 |
|
affinecomb1.e |
|- ( ph -> E e. RR ) |
| 6 |
|
affinecomb1.f |
|- ( ph -> F e. RR ) |
| 7 |
|
affinecomb1.g |
|- ( ph -> G e. RR ) |
| 8 |
|
affinecomb1.s |
|- S = ( ( G - F ) / ( C - B ) ) |
| 9 |
1
|
adantr |
|- ( ( ph /\ t e. RR ) -> A e. RR ) |
| 10 |
9
|
recnd |
|- ( ( ph /\ t e. RR ) -> A e. CC ) |
| 11 |
2
|
adantr |
|- ( ( ph /\ t e. RR ) -> B e. RR ) |
| 12 |
11
|
recnd |
|- ( ( ph /\ t e. RR ) -> B e. CC ) |
| 13 |
3
|
adantr |
|- ( ( ph /\ t e. RR ) -> C e. RR ) |
| 14 |
13
|
recnd |
|- ( ( ph /\ t e. RR ) -> C e. CC ) |
| 15 |
|
simpr |
|- ( ( ph /\ t e. RR ) -> t e. RR ) |
| 16 |
15
|
recnd |
|- ( ( ph /\ t e. RR ) -> t e. CC ) |
| 17 |
4
|
adantr |
|- ( ( ph /\ t e. RR ) -> B =/= C ) |
| 18 |
10 12 14 16 17
|
affineequivne |
|- ( ( ph /\ t e. RR ) -> ( A = ( ( ( 1 - t ) x. B ) + ( t x. C ) ) <-> t = ( ( A - B ) / ( C - B ) ) ) ) |
| 19 |
|
oveq2 |
|- ( t = ( ( A - B ) / ( C - B ) ) -> ( 1 - t ) = ( 1 - ( ( A - B ) / ( C - B ) ) ) ) |
| 20 |
19
|
oveq1d |
|- ( t = ( ( A - B ) / ( C - B ) ) -> ( ( 1 - t ) x. F ) = ( ( 1 - ( ( A - B ) / ( C - B ) ) ) x. F ) ) |
| 21 |
|
oveq1 |
|- ( t = ( ( A - B ) / ( C - B ) ) -> ( t x. G ) = ( ( ( A - B ) / ( C - B ) ) x. G ) ) |
| 22 |
20 21
|
oveq12d |
|- ( t = ( ( A - B ) / ( C - B ) ) -> ( ( ( 1 - t ) x. F ) + ( t x. G ) ) = ( ( ( 1 - ( ( A - B ) / ( C - B ) ) ) x. F ) + ( ( ( A - B ) / ( C - B ) ) x. G ) ) ) |
| 23 |
22
|
eqeq2d |
|- ( t = ( ( A - B ) / ( C - B ) ) -> ( E = ( ( ( 1 - t ) x. F ) + ( t x. G ) ) <-> E = ( ( ( 1 - ( ( A - B ) / ( C - B ) ) ) x. F ) + ( ( ( A - B ) / ( C - B ) ) x. G ) ) ) ) |
| 24 |
23
|
adantl |
|- ( ( ( ph /\ t e. RR ) /\ t = ( ( A - B ) / ( C - B ) ) ) -> ( E = ( ( ( 1 - t ) x. F ) + ( t x. G ) ) <-> E = ( ( ( 1 - ( ( A - B ) / ( C - B ) ) ) x. F ) + ( ( ( A - B ) / ( C - B ) ) x. G ) ) ) ) |
| 25 |
|
eqidd |
|- ( ph -> ( ( ( ( A - B ) / ( C - B ) ) x. ( G - F ) ) + F ) = ( ( ( ( A - B ) / ( C - B ) ) x. ( G - F ) ) + F ) ) |
| 26 |
1 2
|
resubcld |
|- ( ph -> ( A - B ) e. RR ) |
| 27 |
3 2
|
resubcld |
|- ( ph -> ( C - B ) e. RR ) |
| 28 |
3
|
recnd |
|- ( ph -> C e. CC ) |
| 29 |
2
|
recnd |
|- ( ph -> B e. CC ) |
| 30 |
4
|
necomd |
|- ( ph -> C =/= B ) |
| 31 |
28 29 30
|
subne0d |
|- ( ph -> ( C - B ) =/= 0 ) |
| 32 |
26 27 31
|
redivcld |
|- ( ph -> ( ( A - B ) / ( C - B ) ) e. RR ) |
| 33 |
7 6
|
resubcld |
|- ( ph -> ( G - F ) e. RR ) |
| 34 |
32 33
|
remulcld |
|- ( ph -> ( ( ( A - B ) / ( C - B ) ) x. ( G - F ) ) e. RR ) |
| 35 |
34 6
|
readdcld |
|- ( ph -> ( ( ( ( A - B ) / ( C - B ) ) x. ( G - F ) ) + F ) e. RR ) |
| 36 |
35
|
recnd |
|- ( ph -> ( ( ( ( A - B ) / ( C - B ) ) x. ( G - F ) ) + F ) e. CC ) |
| 37 |
6
|
recnd |
|- ( ph -> F e. CC ) |
| 38 |
7
|
recnd |
|- ( ph -> G e. CC ) |
| 39 |
32
|
recnd |
|- ( ph -> ( ( A - B ) / ( C - B ) ) e. CC ) |
| 40 |
36 37 38 39
|
affineequiv4 |
|- ( ph -> ( ( ( ( ( A - B ) / ( C - B ) ) x. ( G - F ) ) + F ) = ( ( ( 1 - ( ( A - B ) / ( C - B ) ) ) x. F ) + ( ( ( A - B ) / ( C - B ) ) x. G ) ) <-> ( ( ( ( A - B ) / ( C - B ) ) x. ( G - F ) ) + F ) = ( ( ( ( A - B ) / ( C - B ) ) x. ( G - F ) ) + F ) ) ) |
| 41 |
25 40
|
mpbird |
|- ( ph -> ( ( ( ( A - B ) / ( C - B ) ) x. ( G - F ) ) + F ) = ( ( ( 1 - ( ( A - B ) / ( C - B ) ) ) x. F ) + ( ( ( A - B ) / ( C - B ) ) x. G ) ) ) |
| 42 |
26
|
recnd |
|- ( ph -> ( A - B ) e. CC ) |
| 43 |
27
|
recnd |
|- ( ph -> ( C - B ) e. CC ) |
| 44 |
33
|
recnd |
|- ( ph -> ( G - F ) e. CC ) |
| 45 |
42 43 44 31
|
div13d |
|- ( ph -> ( ( ( A - B ) / ( C - B ) ) x. ( G - F ) ) = ( ( ( G - F ) / ( C - B ) ) x. ( A - B ) ) ) |
| 46 |
8
|
oveq1i |
|- ( S x. ( A - B ) ) = ( ( ( G - F ) / ( C - B ) ) x. ( A - B ) ) |
| 47 |
45 46
|
eqtr4di |
|- ( ph -> ( ( ( A - B ) / ( C - B ) ) x. ( G - F ) ) = ( S x. ( A - B ) ) ) |
| 48 |
47
|
oveq1d |
|- ( ph -> ( ( ( ( A - B ) / ( C - B ) ) x. ( G - F ) ) + F ) = ( ( S x. ( A - B ) ) + F ) ) |
| 49 |
41 48
|
eqtr3d |
|- ( ph -> ( ( ( 1 - ( ( A - B ) / ( C - B ) ) ) x. F ) + ( ( ( A - B ) / ( C - B ) ) x. G ) ) = ( ( S x. ( A - B ) ) + F ) ) |
| 50 |
49
|
adantr |
|- ( ( ph /\ t e. RR ) -> ( ( ( 1 - ( ( A - B ) / ( C - B ) ) ) x. F ) + ( ( ( A - B ) / ( C - B ) ) x. G ) ) = ( ( S x. ( A - B ) ) + F ) ) |
| 51 |
50
|
eqeq2d |
|- ( ( ph /\ t e. RR ) -> ( E = ( ( ( 1 - ( ( A - B ) / ( C - B ) ) ) x. F ) + ( ( ( A - B ) / ( C - B ) ) x. G ) ) <-> E = ( ( S x. ( A - B ) ) + F ) ) ) |
| 52 |
51
|
biimpd |
|- ( ( ph /\ t e. RR ) -> ( E = ( ( ( 1 - ( ( A - B ) / ( C - B ) ) ) x. F ) + ( ( ( A - B ) / ( C - B ) ) x. G ) ) -> E = ( ( S x. ( A - B ) ) + F ) ) ) |
| 53 |
52
|
adantr |
|- ( ( ( ph /\ t e. RR ) /\ t = ( ( A - B ) / ( C - B ) ) ) -> ( E = ( ( ( 1 - ( ( A - B ) / ( C - B ) ) ) x. F ) + ( ( ( A - B ) / ( C - B ) ) x. G ) ) -> E = ( ( S x. ( A - B ) ) + F ) ) ) |
| 54 |
24 53
|
sylbid |
|- ( ( ( ph /\ t e. RR ) /\ t = ( ( A - B ) / ( C - B ) ) ) -> ( E = ( ( ( 1 - t ) x. F ) + ( t x. G ) ) -> E = ( ( S x. ( A - B ) ) + F ) ) ) |
| 55 |
54
|
ex |
|- ( ( ph /\ t e. RR ) -> ( t = ( ( A - B ) / ( C - B ) ) -> ( E = ( ( ( 1 - t ) x. F ) + ( t x. G ) ) -> E = ( ( S x. ( A - B ) ) + F ) ) ) ) |
| 56 |
18 55
|
sylbid |
|- ( ( ph /\ t e. RR ) -> ( A = ( ( ( 1 - t ) x. B ) + ( t x. C ) ) -> ( E = ( ( ( 1 - t ) x. F ) + ( t x. G ) ) -> E = ( ( S x. ( A - B ) ) + F ) ) ) ) |
| 57 |
56
|
impd |
|- ( ( ph /\ t e. RR ) -> ( ( A = ( ( ( 1 - t ) x. B ) + ( t x. C ) ) /\ E = ( ( ( 1 - t ) x. F ) + ( t x. G ) ) ) -> E = ( ( S x. ( A - B ) ) + F ) ) ) |
| 58 |
57
|
rexlimdva |
|- ( ph -> ( E. t e. RR ( A = ( ( ( 1 - t ) x. B ) + ( t x. C ) ) /\ E = ( ( ( 1 - t ) x. F ) + ( t x. G ) ) ) -> E = ( ( S x. ( A - B ) ) + F ) ) ) |
| 59 |
5
|
adantr |
|- ( ( ph /\ t = ( ( A - B ) / ( C - B ) ) ) -> E e. RR ) |
| 60 |
59
|
recnd |
|- ( ( ph /\ t = ( ( A - B ) / ( C - B ) ) ) -> E e. CC ) |
| 61 |
37
|
adantr |
|- ( ( ph /\ t = ( ( A - B ) / ( C - B ) ) ) -> F e. CC ) |
| 62 |
38
|
adantr |
|- ( ( ph /\ t = ( ( A - B ) / ( C - B ) ) ) -> G e. CC ) |
| 63 |
32
|
adantr |
|- ( ( ph /\ t = ( ( A - B ) / ( C - B ) ) ) -> ( ( A - B ) / ( C - B ) ) e. RR ) |
| 64 |
|
eleq1 |
|- ( t = ( ( A - B ) / ( C - B ) ) -> ( t e. RR <-> ( ( A - B ) / ( C - B ) ) e. RR ) ) |
| 65 |
64
|
adantl |
|- ( ( ph /\ t = ( ( A - B ) / ( C - B ) ) ) -> ( t e. RR <-> ( ( A - B ) / ( C - B ) ) e. RR ) ) |
| 66 |
63 65
|
mpbird |
|- ( ( ph /\ t = ( ( A - B ) / ( C - B ) ) ) -> t e. RR ) |
| 67 |
66
|
recnd |
|- ( ( ph /\ t = ( ( A - B ) / ( C - B ) ) ) -> t e. CC ) |
| 68 |
60 61 62 67
|
affineequiv4 |
|- ( ( ph /\ t = ( ( A - B ) / ( C - B ) ) ) -> ( E = ( ( ( 1 - t ) x. F ) + ( t x. G ) ) <-> E = ( ( t x. ( G - F ) ) + F ) ) ) |
| 69 |
19
|
oveq1d |
|- ( t = ( ( A - B ) / ( C - B ) ) -> ( ( 1 - t ) x. B ) = ( ( 1 - ( ( A - B ) / ( C - B ) ) ) x. B ) ) |
| 70 |
|
oveq1 |
|- ( t = ( ( A - B ) / ( C - B ) ) -> ( t x. C ) = ( ( ( A - B ) / ( C - B ) ) x. C ) ) |
| 71 |
69 70
|
oveq12d |
|- ( t = ( ( A - B ) / ( C - B ) ) -> ( ( ( 1 - t ) x. B ) + ( t x. C ) ) = ( ( ( 1 - ( ( A - B ) / ( C - B ) ) ) x. B ) + ( ( ( A - B ) / ( C - B ) ) x. C ) ) ) |
| 72 |
|
eqidd |
|- ( ph -> ( ( A - B ) / ( C - B ) ) = ( ( A - B ) / ( C - B ) ) ) |
| 73 |
1
|
recnd |
|- ( ph -> A e. CC ) |
| 74 |
73 29 28 39 4
|
affineequivne |
|- ( ph -> ( A = ( ( ( 1 - ( ( A - B ) / ( C - B ) ) ) x. B ) + ( ( ( A - B ) / ( C - B ) ) x. C ) ) <-> ( ( A - B ) / ( C - B ) ) = ( ( A - B ) / ( C - B ) ) ) ) |
| 75 |
72 74
|
mpbird |
|- ( ph -> A = ( ( ( 1 - ( ( A - B ) / ( C - B ) ) ) x. B ) + ( ( ( A - B ) / ( C - B ) ) x. C ) ) ) |
| 76 |
75
|
eqcomd |
|- ( ph -> ( ( ( 1 - ( ( A - B ) / ( C - B ) ) ) x. B ) + ( ( ( A - B ) / ( C - B ) ) x. C ) ) = A ) |
| 77 |
71 76
|
sylan9eqr |
|- ( ( ph /\ t = ( ( A - B ) / ( C - B ) ) ) -> ( ( ( 1 - t ) x. B ) + ( t x. C ) ) = A ) |
| 78 |
77
|
eqcomd |
|- ( ( ph /\ t = ( ( A - B ) / ( C - B ) ) ) -> A = ( ( ( 1 - t ) x. B ) + ( t x. C ) ) ) |
| 79 |
78
|
biantrurd |
|- ( ( ph /\ t = ( ( A - B ) / ( C - B ) ) ) -> ( E = ( ( ( 1 - t ) x. F ) + ( t x. G ) ) <-> ( A = ( ( ( 1 - t ) x. B ) + ( t x. C ) ) /\ E = ( ( ( 1 - t ) x. F ) + ( t x. G ) ) ) ) ) |
| 80 |
45
|
adantr |
|- ( ( ph /\ t = ( ( A - B ) / ( C - B ) ) ) -> ( ( ( A - B ) / ( C - B ) ) x. ( G - F ) ) = ( ( ( G - F ) / ( C - B ) ) x. ( A - B ) ) ) |
| 81 |
|
oveq1 |
|- ( t = ( ( A - B ) / ( C - B ) ) -> ( t x. ( G - F ) ) = ( ( ( A - B ) / ( C - B ) ) x. ( G - F ) ) ) |
| 82 |
81
|
adantl |
|- ( ( ph /\ t = ( ( A - B ) / ( C - B ) ) ) -> ( t x. ( G - F ) ) = ( ( ( A - B ) / ( C - B ) ) x. ( G - F ) ) ) |
| 83 |
46
|
a1i |
|- ( ( ph /\ t = ( ( A - B ) / ( C - B ) ) ) -> ( S x. ( A - B ) ) = ( ( ( G - F ) / ( C - B ) ) x. ( A - B ) ) ) |
| 84 |
80 82 83
|
3eqtr4d |
|- ( ( ph /\ t = ( ( A - B ) / ( C - B ) ) ) -> ( t x. ( G - F ) ) = ( S x. ( A - B ) ) ) |
| 85 |
84
|
oveq1d |
|- ( ( ph /\ t = ( ( A - B ) / ( C - B ) ) ) -> ( ( t x. ( G - F ) ) + F ) = ( ( S x. ( A - B ) ) + F ) ) |
| 86 |
85
|
eqeq2d |
|- ( ( ph /\ t = ( ( A - B ) / ( C - B ) ) ) -> ( E = ( ( t x. ( G - F ) ) + F ) <-> E = ( ( S x. ( A - B ) ) + F ) ) ) |
| 87 |
68 79 86
|
3bitr3d |
|- ( ( ph /\ t = ( ( A - B ) / ( C - B ) ) ) -> ( ( A = ( ( ( 1 - t ) x. B ) + ( t x. C ) ) /\ E = ( ( ( 1 - t ) x. F ) + ( t x. G ) ) ) <-> E = ( ( S x. ( A - B ) ) + F ) ) ) |
| 88 |
32 87
|
rspcedv |
|- ( ph -> ( E = ( ( S x. ( A - B ) ) + F ) -> E. t e. RR ( A = ( ( ( 1 - t ) x. B ) + ( t x. C ) ) /\ E = ( ( ( 1 - t ) x. F ) + ( t x. G ) ) ) ) ) |
| 89 |
58 88
|
impbid |
|- ( ph -> ( E. t e. RR ( A = ( ( ( 1 - t ) x. B ) + ( t x. C ) ) /\ E = ( ( ( 1 - t ) x. F ) + ( t x. G ) ) ) <-> E = ( ( S x. ( A - B ) ) + F ) ) ) |