| Step |
Hyp |
Ref |
Expression |
| 1 |
|
affinecomb1.a |
|- ( ph -> A e. RR ) |
| 2 |
|
affinecomb1.b |
|- ( ph -> B e. RR ) |
| 3 |
|
affinecomb1.c |
|- ( ph -> C e. RR ) |
| 4 |
|
affinecomb1.d |
|- ( ph -> B =/= C ) |
| 5 |
|
affinecomb1.e |
|- ( ph -> E e. RR ) |
| 6 |
|
affinecomb1.f |
|- ( ph -> F e. RR ) |
| 7 |
|
affinecomb1.g |
|- ( ph -> G e. RR ) |
| 8 |
|
eqid |
|- ( ( G - F ) / ( C - B ) ) = ( ( G - F ) / ( C - B ) ) |
| 9 |
1 2 3 4 5 6 7 8
|
affinecomb1 |
|- ( ph -> ( E. t e. RR ( A = ( ( ( 1 - t ) x. B ) + ( t x. C ) ) /\ E = ( ( ( 1 - t ) x. F ) + ( t x. G ) ) ) <-> E = ( ( ( ( G - F ) / ( C - B ) ) x. ( A - B ) ) + F ) ) ) |
| 10 |
5
|
recnd |
|- ( ph -> E e. CC ) |
| 11 |
7
|
recnd |
|- ( ph -> G e. CC ) |
| 12 |
6
|
recnd |
|- ( ph -> F e. CC ) |
| 13 |
11 12
|
subcld |
|- ( ph -> ( G - F ) e. CC ) |
| 14 |
3
|
recnd |
|- ( ph -> C e. CC ) |
| 15 |
2
|
recnd |
|- ( ph -> B e. CC ) |
| 16 |
14 15
|
subcld |
|- ( ph -> ( C - B ) e. CC ) |
| 17 |
4
|
necomd |
|- ( ph -> C =/= B ) |
| 18 |
14 15 17
|
subne0d |
|- ( ph -> ( C - B ) =/= 0 ) |
| 19 |
13 16 18
|
divcld |
|- ( ph -> ( ( G - F ) / ( C - B ) ) e. CC ) |
| 20 |
1
|
recnd |
|- ( ph -> A e. CC ) |
| 21 |
20 15
|
subcld |
|- ( ph -> ( A - B ) e. CC ) |
| 22 |
19 21
|
mulcld |
|- ( ph -> ( ( ( G - F ) / ( C - B ) ) x. ( A - B ) ) e. CC ) |
| 23 |
22 12
|
addcld |
|- ( ph -> ( ( ( ( G - F ) / ( C - B ) ) x. ( A - B ) ) + F ) e. CC ) |
| 24 |
10 23 16 18
|
mulcand |
|- ( ph -> ( ( ( C - B ) x. E ) = ( ( C - B ) x. ( ( ( ( G - F ) / ( C - B ) ) x. ( A - B ) ) + F ) ) <-> E = ( ( ( ( G - F ) / ( C - B ) ) x. ( A - B ) ) + F ) ) ) |
| 25 |
16 22 12
|
adddid |
|- ( ph -> ( ( C - B ) x. ( ( ( ( G - F ) / ( C - B ) ) x. ( A - B ) ) + F ) ) = ( ( ( C - B ) x. ( ( ( G - F ) / ( C - B ) ) x. ( A - B ) ) ) + ( ( C - B ) x. F ) ) ) |
| 26 |
13 16 18
|
divcan2d |
|- ( ph -> ( ( C - B ) x. ( ( G - F ) / ( C - B ) ) ) = ( G - F ) ) |
| 27 |
26
|
oveq1d |
|- ( ph -> ( ( ( C - B ) x. ( ( G - F ) / ( C - B ) ) ) x. ( A - B ) ) = ( ( G - F ) x. ( A - B ) ) ) |
| 28 |
16 19 21
|
mulassd |
|- ( ph -> ( ( ( C - B ) x. ( ( G - F ) / ( C - B ) ) ) x. ( A - B ) ) = ( ( C - B ) x. ( ( ( G - F ) / ( C - B ) ) x. ( A - B ) ) ) ) |
| 29 |
13 20 15
|
subdid |
|- ( ph -> ( ( G - F ) x. ( A - B ) ) = ( ( ( G - F ) x. A ) - ( ( G - F ) x. B ) ) ) |
| 30 |
27 28 29
|
3eqtr3d |
|- ( ph -> ( ( C - B ) x. ( ( ( G - F ) / ( C - B ) ) x. ( A - B ) ) ) = ( ( ( G - F ) x. A ) - ( ( G - F ) x. B ) ) ) |
| 31 |
14 15 12
|
subdird |
|- ( ph -> ( ( C - B ) x. F ) = ( ( C x. F ) - ( B x. F ) ) ) |
| 32 |
30 31
|
oveq12d |
|- ( ph -> ( ( ( C - B ) x. ( ( ( G - F ) / ( C - B ) ) x. ( A - B ) ) ) + ( ( C - B ) x. F ) ) = ( ( ( ( G - F ) x. A ) - ( ( G - F ) x. B ) ) + ( ( C x. F ) - ( B x. F ) ) ) ) |
| 33 |
13 20
|
mulcld |
|- ( ph -> ( ( G - F ) x. A ) e. CC ) |
| 34 |
13 15
|
mulcld |
|- ( ph -> ( ( G - F ) x. B ) e. CC ) |
| 35 |
14 12
|
mulcld |
|- ( ph -> ( C x. F ) e. CC ) |
| 36 |
15 12
|
mulcld |
|- ( ph -> ( B x. F ) e. CC ) |
| 37 |
35 36
|
subcld |
|- ( ph -> ( ( C x. F ) - ( B x. F ) ) e. CC ) |
| 38 |
33 34 37
|
subadd23d |
|- ( ph -> ( ( ( ( G - F ) x. A ) - ( ( G - F ) x. B ) ) + ( ( C x. F ) - ( B x. F ) ) ) = ( ( ( G - F ) x. A ) + ( ( ( C x. F ) - ( B x. F ) ) - ( ( G - F ) x. B ) ) ) ) |
| 39 |
32 38
|
eqtrd |
|- ( ph -> ( ( ( C - B ) x. ( ( ( G - F ) / ( C - B ) ) x. ( A - B ) ) ) + ( ( C - B ) x. F ) ) = ( ( ( G - F ) x. A ) + ( ( ( C x. F ) - ( B x. F ) ) - ( ( G - F ) x. B ) ) ) ) |
| 40 |
14 12
|
mulcomd |
|- ( ph -> ( C x. F ) = ( F x. C ) ) |
| 41 |
15 12
|
mulcomd |
|- ( ph -> ( B x. F ) = ( F x. B ) ) |
| 42 |
40 41
|
oveq12d |
|- ( ph -> ( ( C x. F ) - ( B x. F ) ) = ( ( F x. C ) - ( F x. B ) ) ) |
| 43 |
11 12 15
|
subdird |
|- ( ph -> ( ( G - F ) x. B ) = ( ( G x. B ) - ( F x. B ) ) ) |
| 44 |
42 43
|
oveq12d |
|- ( ph -> ( ( ( C x. F ) - ( B x. F ) ) - ( ( G - F ) x. B ) ) = ( ( ( F x. C ) - ( F x. B ) ) - ( ( G x. B ) - ( F x. B ) ) ) ) |
| 45 |
12 14
|
mulcld |
|- ( ph -> ( F x. C ) e. CC ) |
| 46 |
11 15
|
mulcld |
|- ( ph -> ( G x. B ) e. CC ) |
| 47 |
12 15
|
mulcld |
|- ( ph -> ( F x. B ) e. CC ) |
| 48 |
45 46 47
|
nnncan2d |
|- ( ph -> ( ( ( F x. C ) - ( F x. B ) ) - ( ( G x. B ) - ( F x. B ) ) ) = ( ( F x. C ) - ( G x. B ) ) ) |
| 49 |
11 15
|
mulcomd |
|- ( ph -> ( G x. B ) = ( B x. G ) ) |
| 50 |
49
|
oveq2d |
|- ( ph -> ( ( F x. C ) - ( G x. B ) ) = ( ( F x. C ) - ( B x. G ) ) ) |
| 51 |
44 48 50
|
3eqtrd |
|- ( ph -> ( ( ( C x. F ) - ( B x. F ) ) - ( ( G - F ) x. B ) ) = ( ( F x. C ) - ( B x. G ) ) ) |
| 52 |
51
|
oveq2d |
|- ( ph -> ( ( ( G - F ) x. A ) + ( ( ( C x. F ) - ( B x. F ) ) - ( ( G - F ) x. B ) ) ) = ( ( ( G - F ) x. A ) + ( ( F x. C ) - ( B x. G ) ) ) ) |
| 53 |
25 39 52
|
3eqtrd |
|- ( ph -> ( ( C - B ) x. ( ( ( ( G - F ) / ( C - B ) ) x. ( A - B ) ) + F ) ) = ( ( ( G - F ) x. A ) + ( ( F x. C ) - ( B x. G ) ) ) ) |
| 54 |
53
|
eqeq2d |
|- ( ph -> ( ( ( C - B ) x. E ) = ( ( C - B ) x. ( ( ( ( G - F ) / ( C - B ) ) x. ( A - B ) ) + F ) ) <-> ( ( C - B ) x. E ) = ( ( ( G - F ) x. A ) + ( ( F x. C ) - ( B x. G ) ) ) ) ) |
| 55 |
9 24 54
|
3bitr2d |
|- ( ph -> ( E. t e. RR ( A = ( ( ( 1 - t ) x. B ) + ( t x. C ) ) /\ E = ( ( ( 1 - t ) x. F ) + ( t x. G ) ) ) <-> ( ( C - B ) x. E ) = ( ( ( G - F ) x. A ) + ( ( F x. C ) - ( B x. G ) ) ) ) ) |