Step |
Hyp |
Ref |
Expression |
1 |
|
affineequiv.a |
|- ( ph -> A e. CC ) |
2 |
|
affineequiv.b |
|- ( ph -> B e. CC ) |
3 |
|
affineequiv.c |
|- ( ph -> C e. CC ) |
4 |
|
affineequiv.d |
|- ( ph -> D e. CC ) |
5 |
4 3
|
mulcld |
|- ( ph -> ( D x. C ) e. CC ) |
6 |
4 1
|
mulcld |
|- ( ph -> ( D x. A ) e. CC ) |
7 |
3 5 6
|
subsubd |
|- ( ph -> ( C - ( ( D x. C ) - ( D x. A ) ) ) = ( ( C - ( D x. C ) ) + ( D x. A ) ) ) |
8 |
3 5
|
subcld |
|- ( ph -> ( C - ( D x. C ) ) e. CC ) |
9 |
8 6
|
addcomd |
|- ( ph -> ( ( C - ( D x. C ) ) + ( D x. A ) ) = ( ( D x. A ) + ( C - ( D x. C ) ) ) ) |
10 |
7 9
|
eqtr2d |
|- ( ph -> ( ( D x. A ) + ( C - ( D x. C ) ) ) = ( C - ( ( D x. C ) - ( D x. A ) ) ) ) |
11 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
12 |
11 4 3
|
subdird |
|- ( ph -> ( ( 1 - D ) x. C ) = ( ( 1 x. C ) - ( D x. C ) ) ) |
13 |
3
|
mulid2d |
|- ( ph -> ( 1 x. C ) = C ) |
14 |
13
|
oveq1d |
|- ( ph -> ( ( 1 x. C ) - ( D x. C ) ) = ( C - ( D x. C ) ) ) |
15 |
12 14
|
eqtrd |
|- ( ph -> ( ( 1 - D ) x. C ) = ( C - ( D x. C ) ) ) |
16 |
15
|
oveq2d |
|- ( ph -> ( ( D x. A ) + ( ( 1 - D ) x. C ) ) = ( ( D x. A ) + ( C - ( D x. C ) ) ) ) |
17 |
3 2
|
subcld |
|- ( ph -> ( C - B ) e. CC ) |
18 |
3 1
|
subcld |
|- ( ph -> ( C - A ) e. CC ) |
19 |
4 18
|
mulcld |
|- ( ph -> ( D x. ( C - A ) ) e. CC ) |
20 |
2 17 19
|
addsubassd |
|- ( ph -> ( ( B + ( C - B ) ) - ( D x. ( C - A ) ) ) = ( B + ( ( C - B ) - ( D x. ( C - A ) ) ) ) ) |
21 |
2 3
|
pncan3d |
|- ( ph -> ( B + ( C - B ) ) = C ) |
22 |
4 3 1
|
subdid |
|- ( ph -> ( D x. ( C - A ) ) = ( ( D x. C ) - ( D x. A ) ) ) |
23 |
21 22
|
oveq12d |
|- ( ph -> ( ( B + ( C - B ) ) - ( D x. ( C - A ) ) ) = ( C - ( ( D x. C ) - ( D x. A ) ) ) ) |
24 |
20 23
|
eqtr3d |
|- ( ph -> ( B + ( ( C - B ) - ( D x. ( C - A ) ) ) ) = ( C - ( ( D x. C ) - ( D x. A ) ) ) ) |
25 |
10 16 24
|
3eqtr4d |
|- ( ph -> ( ( D x. A ) + ( ( 1 - D ) x. C ) ) = ( B + ( ( C - B ) - ( D x. ( C - A ) ) ) ) ) |
26 |
25
|
eqeq2d |
|- ( ph -> ( B = ( ( D x. A ) + ( ( 1 - D ) x. C ) ) <-> B = ( B + ( ( C - B ) - ( D x. ( C - A ) ) ) ) ) ) |
27 |
2
|
addid1d |
|- ( ph -> ( B + 0 ) = B ) |
28 |
27
|
eqeq1d |
|- ( ph -> ( ( B + 0 ) = ( B + ( ( C - B ) - ( D x. ( C - A ) ) ) ) <-> B = ( B + ( ( C - B ) - ( D x. ( C - A ) ) ) ) ) ) |
29 |
|
0cnd |
|- ( ph -> 0 e. CC ) |
30 |
17 19
|
subcld |
|- ( ph -> ( ( C - B ) - ( D x. ( C - A ) ) ) e. CC ) |
31 |
2 29 30
|
addcand |
|- ( ph -> ( ( B + 0 ) = ( B + ( ( C - B ) - ( D x. ( C - A ) ) ) ) <-> 0 = ( ( C - B ) - ( D x. ( C - A ) ) ) ) ) |
32 |
26 28 31
|
3bitr2d |
|- ( ph -> ( B = ( ( D x. A ) + ( ( 1 - D ) x. C ) ) <-> 0 = ( ( C - B ) - ( D x. ( C - A ) ) ) ) ) |
33 |
|
eqcom |
|- ( 0 = ( ( C - B ) - ( D x. ( C - A ) ) ) <-> ( ( C - B ) - ( D x. ( C - A ) ) ) = 0 ) |
34 |
32 33
|
bitrdi |
|- ( ph -> ( B = ( ( D x. A ) + ( ( 1 - D ) x. C ) ) <-> ( ( C - B ) - ( D x. ( C - A ) ) ) = 0 ) ) |
35 |
17 19
|
subeq0ad |
|- ( ph -> ( ( ( C - B ) - ( D x. ( C - A ) ) ) = 0 <-> ( C - B ) = ( D x. ( C - A ) ) ) ) |
36 |
34 35
|
bitrd |
|- ( ph -> ( B = ( ( D x. A ) + ( ( 1 - D ) x. C ) ) <-> ( C - B ) = ( D x. ( C - A ) ) ) ) |