Step |
Hyp |
Ref |
Expression |
1 |
|
affineequiv.a |
|- ( ph -> A e. CC ) |
2 |
|
affineequiv.b |
|- ( ph -> B e. CC ) |
3 |
|
affineequiv.c |
|- ( ph -> C e. CC ) |
4 |
|
affineequiv.d |
|- ( ph -> D e. CC ) |
5 |
1 2 3 4
|
affineequiv |
|- ( ph -> ( B = ( ( D x. A ) + ( ( 1 - D ) x. C ) ) <-> ( C - B ) = ( D x. ( C - A ) ) ) ) |
6 |
3 1
|
subcld |
|- ( ph -> ( C - A ) e. CC ) |
7 |
3 2
|
subcld |
|- ( ph -> ( C - B ) e. CC ) |
8 |
4 6
|
mulcld |
|- ( ph -> ( D x. ( C - A ) ) e. CC ) |
9 |
6 7 8
|
subcanad |
|- ( ph -> ( ( ( C - A ) - ( C - B ) ) = ( ( C - A ) - ( D x. ( C - A ) ) ) <-> ( C - B ) = ( D x. ( C - A ) ) ) ) |
10 |
3 1 2
|
nnncan1d |
|- ( ph -> ( ( C - A ) - ( C - B ) ) = ( B - A ) ) |
11 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
12 |
11 4 6
|
subdird |
|- ( ph -> ( ( 1 - D ) x. ( C - A ) ) = ( ( 1 x. ( C - A ) ) - ( D x. ( C - A ) ) ) ) |
13 |
6
|
mulid2d |
|- ( ph -> ( 1 x. ( C - A ) ) = ( C - A ) ) |
14 |
13
|
oveq1d |
|- ( ph -> ( ( 1 x. ( C - A ) ) - ( D x. ( C - A ) ) ) = ( ( C - A ) - ( D x. ( C - A ) ) ) ) |
15 |
12 14
|
eqtr2d |
|- ( ph -> ( ( C - A ) - ( D x. ( C - A ) ) ) = ( ( 1 - D ) x. ( C - A ) ) ) |
16 |
10 15
|
eqeq12d |
|- ( ph -> ( ( ( C - A ) - ( C - B ) ) = ( ( C - A ) - ( D x. ( C - A ) ) ) <-> ( B - A ) = ( ( 1 - D ) x. ( C - A ) ) ) ) |
17 |
5 9 16
|
3bitr2d |
|- ( ph -> ( B = ( ( D x. A ) + ( ( 1 - D ) x. C ) ) <-> ( B - A ) = ( ( 1 - D ) x. ( C - A ) ) ) ) |