Metamath Proof Explorer


Theorem affineequiv2

Description: Equivalence between two ways of expressing B as an affine combination of A and C . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses affineequiv.a
|- ( ph -> A e. CC )
affineequiv.b
|- ( ph -> B e. CC )
affineequiv.c
|- ( ph -> C e. CC )
affineequiv.d
|- ( ph -> D e. CC )
Assertion affineequiv2
|- ( ph -> ( B = ( ( D x. A ) + ( ( 1 - D ) x. C ) ) <-> ( B - A ) = ( ( 1 - D ) x. ( C - A ) ) ) )

Proof

Step Hyp Ref Expression
1 affineequiv.a
 |-  ( ph -> A e. CC )
2 affineequiv.b
 |-  ( ph -> B e. CC )
3 affineequiv.c
 |-  ( ph -> C e. CC )
4 affineequiv.d
 |-  ( ph -> D e. CC )
5 1 2 3 4 affineequiv
 |-  ( ph -> ( B = ( ( D x. A ) + ( ( 1 - D ) x. C ) ) <-> ( C - B ) = ( D x. ( C - A ) ) ) )
6 3 1 subcld
 |-  ( ph -> ( C - A ) e. CC )
7 3 2 subcld
 |-  ( ph -> ( C - B ) e. CC )
8 4 6 mulcld
 |-  ( ph -> ( D x. ( C - A ) ) e. CC )
9 6 7 8 subcanad
 |-  ( ph -> ( ( ( C - A ) - ( C - B ) ) = ( ( C - A ) - ( D x. ( C - A ) ) ) <-> ( C - B ) = ( D x. ( C - A ) ) ) )
10 3 1 2 nnncan1d
 |-  ( ph -> ( ( C - A ) - ( C - B ) ) = ( B - A ) )
11 1cnd
 |-  ( ph -> 1 e. CC )
12 11 4 6 subdird
 |-  ( ph -> ( ( 1 - D ) x. ( C - A ) ) = ( ( 1 x. ( C - A ) ) - ( D x. ( C - A ) ) ) )
13 6 mulid2d
 |-  ( ph -> ( 1 x. ( C - A ) ) = ( C - A ) )
14 13 oveq1d
 |-  ( ph -> ( ( 1 x. ( C - A ) ) - ( D x. ( C - A ) ) ) = ( ( C - A ) - ( D x. ( C - A ) ) ) )
15 12 14 eqtr2d
 |-  ( ph -> ( ( C - A ) - ( D x. ( C - A ) ) ) = ( ( 1 - D ) x. ( C - A ) ) )
16 10 15 eqeq12d
 |-  ( ph -> ( ( ( C - A ) - ( C - B ) ) = ( ( C - A ) - ( D x. ( C - A ) ) ) <-> ( B - A ) = ( ( 1 - D ) x. ( C - A ) ) ) )
17 5 9 16 3bitr2d
 |-  ( ph -> ( B = ( ( D x. A ) + ( ( 1 - D ) x. C ) ) <-> ( B - A ) = ( ( 1 - D ) x. ( C - A ) ) ) )