| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fnrnafv |
|- ( F Fn A -> ran F = { y | E. x e. A y = ( F ''' x ) } ) |
| 2 |
1
|
eleq2d |
|- ( F Fn A -> ( B e. ran F <-> B e. { y | E. x e. A y = ( F ''' x ) } ) ) |
| 3 |
|
eqeq1 |
|- ( y = B -> ( y = ( F ''' x ) <-> B = ( F ''' x ) ) ) |
| 4 |
|
eqcom |
|- ( B = ( F ''' x ) <-> ( F ''' x ) = B ) |
| 5 |
3 4
|
bitrdi |
|- ( y = B -> ( y = ( F ''' x ) <-> ( F ''' x ) = B ) ) |
| 6 |
5
|
rexbidv |
|- ( y = B -> ( E. x e. A y = ( F ''' x ) <-> E. x e. A ( F ''' x ) = B ) ) |
| 7 |
6
|
elabg |
|- ( B e. { y | E. x e. A y = ( F ''' x ) } -> ( B e. { y | E. x e. A y = ( F ''' x ) } <-> E. x e. A ( F ''' x ) = B ) ) |
| 8 |
7
|
ibi |
|- ( B e. { y | E. x e. A y = ( F ''' x ) } -> E. x e. A ( F ''' x ) = B ) |
| 9 |
2 8
|
biimtrdi |
|- ( F Fn A -> ( B e. ran F -> E. x e. A ( F ''' x ) = B ) ) |