Description: Given a implies b, (not b), there exists a proof for (not a). (Contributed by Jarvin Udandy, 1-Sep-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | aibnbna.1 | |- ( ph -> ps ) |
|
aibnbna.2 | |- -. ps |
||
Assertion | aibnbna | |- -. ph |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aibnbna.1 | |- ( ph -> ps ) |
|
2 | aibnbna.2 | |- -. ps |
|
3 | 2 1 | mto | |- -. ph |