Metamath Proof Explorer


Theorem aibnbna

Description: Given a implies b, (not b), there exists a proof for (not a). (Contributed by Jarvin Udandy, 1-Sep-2016)

Ref Expression
Hypotheses aibnbna.1
|- ( ph -> ps )
aibnbna.2
|- -. ps
Assertion aibnbna
|- -. ph

Proof

Step Hyp Ref Expression
1 aibnbna.1
 |-  ( ph -> ps )
2 aibnbna.2
 |-  -. ps
3 2 1 mto
 |-  -. ph